POJ 3233 Matrix Power Series (矩阵快速幂)
Description
Given a n × n matrix A and a positive integer k, find the sum S = A + A^2 + A^3 + … + A^k.
Input
The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
Output
Output the elements of S modulo m in the same way as A is given.
Sample Input
2 2 4
0 1
1 1
Sample Output
1 2
2 3
分析:
可以很简单的看出来,这是求矩阵快速幂的题,但是这里面还有一个问题就是它不仅仅是求出一个快速幂就行了,是一系列的快速幂求和,如果我们用普通的方法把每一个幂次求出来然后再相加的话,TLE.所以我们得想到一个解决的办法。
我们令矩阵I是n×n得单位矩阵,
将矩阵A得形式转换为
则左下角得那个n阶矩阵即为所求,但是还要注意的一点就是前面还加上了一个单位矩阵,所以最后的答案还要把单位矩阵减去。
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int n,k,m;
struct matrix
{
int tu[100][100];
matrix()
{
memset(tu,0,sizeof(tu));
}
} A,B;
matrix mul(matrix &A,matrix &B)///定义矩阵的乘法
{
matrix C;
for(int i=0; i<2*n; i++)
for(int j=0; j<2*n; j++)
for(int k=0; k<2*n; k++)
{
C.tu[i][j]=(C.tu[i][j]+(A.tu[i][k]*B.tu[k][j]%m))%m;
}
return C;
}
matrix quick_mi(matrix A,int b)///求一个矩阵的A的b次方
{
matrix C;
for(int i=0; i<2*n; i++)
C.tu[i][i]=1;
while(b)
{
if(b&1)
C=mul(C,A);
b>>=1;
A=mul(A,A);
}
return C;
}
void solve()
{
}
int main()
{
scanf("%d%d%d",&n,&k,&m);
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
{
scanf("%d",&A.tu[i][j]);
B.tu[i][j]=A.tu[i][j];
}
B.tu[n+i][i]=B.tu[n+i][n+i]=1;///把整个矩阵扩展到2*n维
}
B=quick_mi(B,k+1);///求出这个矩阵的k+1次矩阵
for(int i=0; i<n; i++)
for(int j=0; j<n; j++)
{
int a=B.tu[n+i][j]%m;///要求的是左下角的n阶矩阵
if(i==j)
a=(a+m-1)%m;///还要减去单位矩阵
printf("%d%c",a,j+1==n?'\n':' ');
}
return 0;
}
POJ 3233 Matrix Power Series (矩阵快速幂)的更多相关文章
- POJ 3233 Matrix Power Series 矩阵快速幂
设S[k] = A + A^2 +````+A^k. 设矩阵T = A[1] 0 E E 这里的E为n*n单位方阵,0为n*n方阵 令A[k] = A ^ k 矩阵B[k] = A[k+1] S[k] ...
- POJ 3233 Matrix Power Series 矩阵快速幂+二分求和
矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...
- POJ 3233:Matrix Power Series 矩阵快速幂 乘积
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 18450 Accepted: ...
- poj 3233 Matrix Power Series(矩阵二分,高速幂)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 15739 Accepted: ...
- POJ3233:Matrix Power Series(矩阵快速幂+二分)
http://poj.org/problem?id=3233 题目大意:给定矩阵A,求A + A^2 + A^3 + … + A^k的结果(两个矩阵相加就是对应位置分别相加).输出的数据mod m.k ...
- poj 3233 Matrix Power Series 矩阵求和
http://poj.org/problem?id=3233 题解 矩阵快速幂+二分等比数列求和 AC代码 #include <stdio.h> #include <math.h&g ...
- POJ3233 Matrix Power Series 矩阵快速幂 矩阵中的矩阵
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 27277 Accepted: ...
- Poj 3233 Matrix Power Series(矩阵乘法)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Description Given a n × n matrix A and ...
- POJ 3233 Matrix Power Series(矩阵高速功率+二分法)
职务地址:POJ 3233 题目大意:给定矩阵A,求A + A^2 + A^3 + - + A^k的结果(两个矩阵相加就是相应位置分别相加).输出的数据mod m. k<=10^9. 这 ...
- POJ3233:Matrix Power Series(矩阵快速幂+递推式)
传送门 题意 给出n,m,k,求 \[\sum_{i=1}^kA^i\] A是矩阵 分析 我们首先会想到等比公式,然后得到这样一个式子: \[\frac{A^{k+1}-E}{A-E}\] 发现要用矩 ...
随机推荐
- 结对编程——paperOne基于java web的简易四则运算出题网站
项目成员:张金生 张政 需求分析: 1.要进行四则运算: 2.运算题目随机: 3.进行对错判断: 4.整数运算. 程序概要: 1.用JSP实现: 2.用户可选择题目数量: 3.答题页用表格列出 ...
- PAT 甲级 1054 The Dominant Color
https://pintia.cn/problem-sets/994805342720868352/problems/994805422639136768 Behind the scenes in t ...
- Node.js系列——(1)安装配置与基本使用
1.安装 进入下载地址 小编下载的是msi文件,下一步下一步傻瓜式安装. 打印个hello看看: 2.REPL 全称Read Eval Print Loop,即交互式解释器,可以执行读取.执行.打印. ...
- Java JVM- jstat查看jvm的GC情况[转]
ava通过jvm自己管理内存,同时Java提供了一些命令行工具,用于查看内存使用情况.这里主要介绍一下jstat.jmap命令以及相关工具. 一.jstat查看 gc实时执行情况 jstat命令命令格 ...
- 第89天:HTML5中 访问历史、全屏和网页存储API
一.访问历史 API 通过history对象实现前进.后退和刷新之类的操作 history新增的两个方法history.replaceState()和history.pushState()方法属于HT ...
- IP组播技术
1 概述 1.1 产生背景 传统的IP通信有两种方式:一种是在源主机与目的主机之间点对点的通信,即单播:另一种是在源主机与同一网段中所有其它主机之间点对多点的通信,即广播.如果要将信息发送给多 ...
- Spring Boot系列教程四:配置文件详解properties
一.配置随机数,使用随机数 在application.properties文件添加配置信息 #32位随机数 woniu.secret=${random.value} #随机整数 woniu.numbe ...
- 服务器版“永恒之蓝”高危预警 (Samba远程命令执行漏洞CVE-2017-7494) 攻击演示
漏洞信息: 2017年5月24日Samba发布了4.6.4版本,中间修复了一个严重的远程代码执行漏洞,漏洞编号CVE-2017-7494,漏洞影响了Samba 3.5.0 之后到4.6.4/4.5.1 ...
- Linux基础------文件打包解包---tar命令,文件压缩解压---命令gzip,vim编辑器创建和编辑正文件,磁盘分区/格式化,软/硬链接
作业一:1) 将用户信息数据库文件和组信息数据库文件纵向合并为一个文件/1.txt(覆盖) cat /etc/passwd /etc/group > /1.txt2) 将用户信息数据库文件和用户 ...
- 【cdq分治】【CF1093E】 Intersection of Permutations
传送门 果然前两天写完咕咕咕那个题的题解以后博客就开始咕咕咕了-- Description 给定整数 \(n\) 和两个 \(1~\sim~n\) 的排列 \(A,B\). \(m\) 个操作,操作有 ...