http://www.lydsy.com/JudgeOnline/problem.php?id=1696

原题要求min(sum{|x-xi|+|y-yi|}),且一定要看题:“没有两头牛的吃草位置是相邻的”。。。。。。。。。噗,,我就说我怎么能造出反例。。原来我没看题。。

其实sum和min都可以拆开的T_T,我没意识到啊。。

求min( sum{|x-xi|} + sum{|y-yi|} )

我们来考虑,怎么最小化他们。。。

画条数轴。。。。。。然后。。。找中位数T_T

我小学森都不如

。。

那么思路很清晰了,,,

对于奇数。只有一个中位数,那么我们找1~n所有x的中位数和y的中位数,,这个就是它的点。。但是要注意,这个点不能和牛重合。如果重合,那么就取牛的上下左右四个点,即“没有两头牛的吃草位置是相邻的”,可以证明这是最优。。

对于偶数。有2个中位数,,那么我们就要找这两个中位数中所有的可行点。(其实这个范围内所有的点都是可行点,即答案有(xx-x+1)*(yy-y+1)个。。但是注意,这里面不能有牛,所以每找到一个牛,就要减去一个答案。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=10005;
struct dat { int x, y; }a[N];
bool cmpx(const dat &a, const dat &b) { return a.x<b.x; }
bool cmpy(const dat &a, const dat &b) { return a.y<b.y; }
int n, ans1, ans2;
bool check(int x, int y) {
for1(i, 1, n) if(a[i].x==x && a[i].y==y) return 0;
return 1;
}
int main() {
read(n);
for1(i, 1, n) read(a[i].x), read(a[i].y);
if(n&1) {
int x, y;
sort(a+1, a+1+n, cmpx); x=a[(n>>1)+1].x;
sort(a+1, a+1+n, cmpy); y=a[(n>>1)+1].y;
if(check(x, y)) {
for1(i, 1, n) ans1+=abs(x-a[i].x)+abs(y-a[i].y);
ans2=1;
}
else {
static int tp[4];
CC(tp, 0);
int fx[]={x+1, x-1, x, x}, fy[]={y, y, y-1, y+1}; ans1=~0u>>1;
for1(i, 1, n) rep(j, 4) tp[j]+=abs(fx[j]-a[i].x)+abs(fy[j]-a[i].y);
rep(j, 4) if(ans1>tp[j]) ans1=tp[j], ans2=1; else if(ans1==tp[j]) ++ans2;
}
}
else {
int x, y, xx, yy;
sort(a+1, a+1+n, cmpx); x=a[(n>>1)].x; xx=a[(n>>1)+1].x;
sort(a+1, a+1+n, cmpy); y=a[(n>>1)].y; yy=a[(n>>1)+1].y;
ans2=(xx-x+1)*(yy-y+1);
for1(i, 1, n) {
if(a[i].x>=x && a[i].x<=xx && a[i].y>=y && a[i].y<=yy) --ans2;
ans1+=abs(x-a[i].x)+abs(y-a[i].y);
}
}
printf("%d %d", ans1, ans2);
return 0;
}

Description

经 过多年的积蓄,农夫JOHN决定造一个新的牛舍。他知道所有N(2 <= N <= 10,000)头牛的吃草位置,所以他想把牛舍造在最方便的地方。 每一头牛吃草的位置是一个整数点(X_i, Y_i) (-10,000 <= X_i <= 10,000; -10,000 <= Y_i <= 10,000)。 没有两头牛的吃草位置是相邻的。 JOHN决定把牛舍造在一个没有牛吃草的整数点上。如果牛舍在(X, Y),在(X_i, Y_i)的牛到牛舍的距离是|X-X_i|+|Y-Y_i|。 JOHN把牛舍造在哪儿才能使所有牛到牛舍的距离和最低?

Input

第1行: 一个数,N。

第2~N+1行:第i+1行 包含第i头牛的位置(X_i, Y_i)。

Output

第1行: 两个数,最小距离和和所有可能达到这个距离和的牛舍位置的数目。

Sample Input

4
1 -3
0 1
-2 1
1 -1

输入解释:

一共有4头牛,位置分别为(1, -3), (0, 1), (-2, 1), 和(1, -1).

Sample Output

10 4

输出解释:
最小距离和是10,可以在牛舍位于 (0, -1), (0, 0), (1, 0), (1, 1)时达到。

HINT

Source

【BZOJ】1696: [Usaco2007 Feb]Building A New Barn新牛舍(贪心)的更多相关文章

  1. Bzoj 1696: [Usaco2007 Feb]Building A New Barn新牛舍 中位数,数学

    1696: [Usaco2007 Feb]Building A New Barn新牛舍 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 394  Solve ...

  2. bzoj 1696: [Usaco2007 Feb]Building A New Barn新牛舍 ——中位数排序

    Description 经过多年的积蓄,农夫JOHN决定造一个新的牛舍.他知道所有N(2 <= N <= 10,000)头牛的吃草位置,所以他想把牛舍造在最方便的地方. 每一头牛吃草的位置 ...

  3. BZOJ 1696 [Usaco2007 Feb]Building A New Barn新牛舍 数学

    题意:链接 方法:数学+模拟 解析: 首先这类问题不是第一次见了,所以直接知道拿x的中位数.y的中位数. 这题就是讨论情况很的烦. 题中有个限制,给出待求和的点不能选取. 所以假设奇数个点,求出x中位 ...

  4. BZOJ1696: [Usaco2007 Feb]Building A New Barn新牛舍

    n<=10000个点(xi,yi),找到一个不同于给出的所有点的点,使得该点到所有点的曼哈顿距离最小并找出这样的点的个数. 第一眼看上去这不是中位数嘛,奇数一个点偶数一片,然后找一下这篇区域有几 ...

  5. BZOJ 1626: [Usaco2007 Dec]Building Roads 修建道路( MST )

    计算距离时平方爆了int结果就WA了一次...... ------------------------------------------------------------------------- ...

  6. BZOJ 1631: [Usaco2007 Feb]Cow Party( 最短路 )

    这道题和蔡大神出的今年STOI初中组的第二题几乎一模一样... 先跑一遍最短路 , 再把所有边反向 , 再跑一遍 , 所有点两次相加的最大值即为answer --------------------- ...

  7. BZOJ 1633: [Usaco2007 Feb]The Cow Lexicon 牛的词典

    题目 1633: [Usaco2007 Feb]The Cow Lexicon 牛的词典 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 401  Solv ...

  8. BZOJ 1632: [Usaco2007 Feb]Lilypad Pond

    题目 1632: [Usaco2007 Feb]Lilypad Pond Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 390  Solved: 109[ ...

  9. BZOJ 1631: [Usaco2007 Feb]Cow Party

    题目 1631: [Usaco2007 Feb]Cow Party Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 491  Solved: 362[Sub ...

随机推荐

  1. 001-Cocos2dx-2.1.3环境搭建-windows

    图片丢失,转到:http://blog.csdn.net/whyhowwhat/article/details/51908229

  2. CSDN日报20170401 ——《假设你还是“程序猿”,我劝你别创业!》

    [程序人生]假设你还是"程序猿".我劝你别创业! 作者:北漂周 在IT这一行做得久了,会接触到无数让人哭笑不得的外行话. 「我们就差一个写代码的了」是当中典型的一种,之所以黑它.不 ...

  3. 本地ubuntu下pycharm 如何利用远程开发环境时显示图片

    最近使用pycharm远程开发tensorflow,每次在想显示图像时,苦于不知怎么操作,就通过保存后再看结果,使得调试很不方便.今天打算解决这个问题,收获也是很多啊. 我首先参考了这两篇博客: ht ...

  4. C# DataTable Operations

    DataTable详解 https://www.cnblogs.com/Sandon/p/5175829.html 怎样删除一行 https://www.cnblogs.com/jhxk/articl ...

  5. lintcode---线段树查询||(区间元素个数)

    对于一个数组,我们可以对其建立一棵 线段树, 每个结点存储一个额外的值 count 来代表这个结点所指代的数组区间内的元素个数. (数组中并不一定每个位置上都有元素) 实现一个 query 的方法,该 ...

  6. Spring Cloud(四):熔断器Hystrix

    熔断器 雪崩效应 在微服务架构中通常会有多个服务层调用,基础服务的故障可能会导致级联故障,进而造成整个系统不可用的情况,这种现象被称为服务雪崩效应.服务雪崩效应是一种因“服务提供者”的不可用导致“服务 ...

  7. How To run OAI eNB (No S1) with USRP X310(1)

    How To run OAI eNB (No S1) with USRP X310 1.Things need to be done 1.1 Install Ubuntu 14.04 1.1.1 In ...

  8. 8086汇编之 CALL 和 RET指令

    Ret 和 call 也是转移指令,可是他们跟jmp不同的是,这两个转移指令都跟栈有关系. <1> ret 用栈中的数据改动IP的地址,从而实现近转移 ( ip ) = ( (ss)*16 ...

  9. 【ecshop后台详解】系统设置-商店设置

    商店设置是我们ecshop新用户第一步先要设置的地方,因为里面相当于网站的基础.包括公司名称,电话,地址,tittle等重要的信息都是这里修改,如果这里没有修改的话,如果有访客来到你网站可能以为走错了 ...

  10. THREADSPOOL

    STPStartInfo stp = new STPStartInfo();//线程详细配置参数 stp.CallToPostExecute = CallToPostExecute.Always;// ...