My deep learning reading list
My deep learning reading list
主要是顺着Bengio的PAMI review的文章找出来的。包括几本综述文章,将近100篇论文,各位山头们的Presentation。全部都可以在google上找到。
BTW:由于我对视觉尤其是检测识别比较感兴趣,所以关于DL的应用主要都是跟Vision相关的。在其他方面比如语音或者NLP,很少或者几乎没有。个人非常看好CNN和Sparse Autoencoder,这个list也反映了我的偏好,仅供参考。
Review Book List:
[2009 Thesis] Learning Deep Generative Models.pdf
[2009] Learning Deep Architectures for AI.pdf
[2013 DengLi Review] Deep Learning for Signal and Information Processing.pdf
http://deeplearning.net/tutorial/deeplearning.pdf
Paper List:
[1996 Nature] sparse coding.pdf
[1997 Vision] Sparse coding with an overcomplete basis set.pdf
[1998 NIPS] EM Algorithms for PCA and SPCA.pdf
[1998 PIEEE] Gradient-Based Learning Applied to Document Recognition.pdf
[1999] Probabilistic Principal Component Analysis.pdf
[2002 NC] Training Products of Experts by Minimizing Contrastive Divergence.pdf
[2005 JMLR] Estimation of non-normalized statistical models by score matching.pdf
[2006 NC] A fast learning algorithm for deep belief nets.pdf
[2006 NIPS] Efficient Learning of Sparse Representations with an Energy-Based Model.pdf
[2006 NIPS] Efficient sparse coding algorithms.pdf
[2006 Science] Reducing the Dimensionality of Data with Neural Networks.pdf
[2006] A Tutorial on Energy-Based Learning.pdf
[2006] To Recognize Shapes, First Learn to Generate Images montrealTR.pdf
[2007 BOOK] Scaling Learning Algorithms towards AI.pdf
[2007 CVPR] Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition.pdf
[2007 ICML] Self-taught learning transfer learning from unlabeled data.pdf
[2007 NIPS TR] Greedy Layer-Wise Training of Deep Networks.pdf
[2007 NIPS] Sparse deep belief net model for visual area V2.pdf
[2007 NIPS] Sparse Feature Learning for Deep Belief Networks.pdf
[2007] Energy-Based Models in Document Recognition and Computer Vision.pdf
[2008 ICML] Extracting and Composing Robust Features with Denoising Autoencoders.pdf
[2008 ICML] Training restricted Boltzmann machines using approximations to the likelihood gradient.pdf
[2008 PSD] Fast Inference in Sparse Coding Algorithms with Applications to Object Recognition.pdf
[2009 AISTATS] Deep Boltzmann Machines.pdf
[2009 CVPR] Learning invariant features through topographic filter maps.pdf
[2009 CVPR] Linear Spatial Pyramid Matching Using Sparse Coding for Image Classification.pdf
[2009 ICCV] What is the Best Multi-Stage Architecture for Object Recognition.pdf
[2009 ICML] Using Fast Weights to Improve Persistent Contrastive Divergence.pdf
[2009 JMLR] Exploring Strategies for Training Deep Neural Networks.pdf
[2009 NIPS] Nonlinear Learning using Local Coordinate Coding.pdf
[2010 AISTATS] Efficient Learning of Deep Boltzmann Machines.pdf
[2010 AISTATS] On the convergence properties of contrastive divergence.pdf
[2010 CVPR] Learning Mid-Level Features For Recognition.pdf
[2010 CVPR] Locality-constrained Linear Coding for Image Classification.pdf
[2010 CVPR] Modeling Pixel Means and Covariances Using Factorized Third-Order Boltzmann Machines.pdf
[2010 ECCV] Image classification using super-vector coding of local image descriptors.pdf
[2010 ICML] A Theoretical Analysis of Feature Pooling in Visual Recognition.pdf
[2010 ICML] Deep learning via Hessian-free optimization.pdf
[2010 ICML] Learning Deep Boltzmann Machines using Adaptive MCMC.pdf
[2010 ISCAS] Convolutional Networks and Applications in Vision.pdf
[2010 JMLR] Stacked Denoising Autoencoders Learning Useful Representations.pdf
[2010 JMLR] Why Does Unsupervised Pre-training Help Deep Learning.pdf
[2010 NIPS] Learning Convolutional Feature Hierarchies for Visual Recognition.pdf
[2010 NIPS] Regularized estimation of image statistics by Score Matching.pdf
[2011 CACM] Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks.pdf
[2011 CVPR] Learning image representations from the pixel level via hierarchical sparse coding.pdf
[2011 ICCV] Adaptive Deconvolutional Networks for Mid and High Level Feature Learning.pdf
[2011 ICML] Contractive Auto-Encoders.pdf
[2011 ICML] Learning Deep Energy Models.pdf
[2011 ICML] On Autoencoders and Score Matching for Energy Based Models.pdf
[2011 ICML] On optimization methods for deep learning.pdf
[2011 ICML] Unsupervised Models of Images by Spike-and-Slab RBMs.pdf
[2011 JMLR] Unsupervised and transfer learning challenge a deep learning approach.pdf
[2011 NC] A Connection Between Score Matching and Denoising Autoencoders.pdf
[2011 NIPS] Algorithms for Hyper-Parameter Optimization.pdf
[2011 NIPS] Spike-and-Slab Sparse Coding for Unsupervised Feature Discovery.pdf
[2011 UAI] Asymptotic efficiency of deterministic estimators for discrete energy-based models Ratio matching and pseudolikelihood.pdf
[2011] On the Expressive Power of Deep Architectures.pdf
[2012 Book] A Practical Guide to Training Restricted Boltzmann Machines.pdf
[2012 Dropout] Improving neural networks by preventing co-adaptation of feature detectors.pdf
[2012 ICML] A Generative Process for Sampling Contractive Auto-Encoders.pdf
[2012 ICML] Building High-level Features Using Large Scale Unsupervised Learning.pdf
[2012 ICML] Large-Scale Feature Learning With Spike-and-Slab Sparse Coding.pdf
[2012 JMLR] Random Search for Hyper-Parameter Optimization.pdf
[2012 NC] An Efficient Learning Procedure for Deep Boltzmann Machines.pdf
[2012 NIPS] A Better Way to Pre-Train Deep Boltzmann Machines.pdf
[2012 NIPS] Discriminative Learning of Sum-Product Networks.pdf
[2012 NIPS] ImageNet Classification with Deep Convolutional Neural Networks.pdf
[2012 NIPS] Practical Bayesian Optimization of Machine Learning Algorithms.pdf
[2012] Deep Learning via Semi-Supervised Embedding.pdf
[2013 BOOK] Deep Learning of Representations.pdf
[2013 ICLR] Stochastic Pooling for Regularization of Deep Convolutional Neural Networks.pdf
[2013 ICLR] What Regularized Auto-Encoders Learn from the Data Generating Distribution.pdf
[2013 ICML] Better Mixing via Deep Representations.pdf
[2013 ICML] No more pesky learning rates.pdf
[2013 ICML] On autoencoder scoring.pdf
[2013 ICML] On the importance of initialization and momentum in deep learning.pdf
[2013 ICML] Regularization of Neural Networks using DropConnect.pdf
[2013 NIPS] Adaptive dropout for training deep neural networks.pdf
[2013 NIPS] Deep Fisher Networks for Large-Scale Image Classification.pdf
[2013 NIPS] Deep Neural Networks for Object Detection.pdf
[2013 NIPS] Dropout Training as Adaptive Regularization.pdf
[2013 NIPS] Generalized Denoising Auto-Encoders as Generative Models.pdf
[2013 NIPS] Learning a Deep Compact Image Representation for Visual Tracking.pdf
[2013 NIPS] Learning Multi-level Sparse Representations.pdf
[2013 NIPS] Understanding Dropout.pdf
[2013 PAMI] Deep Hierarchies in the Primate Visual Cortex What Can We Learn For Computer Vision.pdf
[2013 PAMI] Deep Learning with Hierarchical Convolutional Factor Analysis.pdf
[2013 PAMI] Invariant Scattering Convolution Networks.pdf
[2013 PAMI] Learning Hierarchical Features for Scene Labeling.pdf
[2013 PAMI] Learning with Hierarchical-Deep Models.pdf
[2013 PAMI] Representation Learning A Review and New Perspectives.pdf
[2013 PAMI] Scaling Up Spike-and-Slab Models for Unsupervised Feature Learning.pdf
[2013 TR] Maxout networks.pdf
[2013 TR] Practical recommendations for gradient-based training of deep architectures.pdf
[2013] Network in Network.pdf
[2013] Visualizing and Understanding Convolutional Networks.pdf
Presentation List:
2007 Deep Belief Nets by hinton on nips2007.pdf
2009 Learning Deep Architectures by Yoshua Bengio.pdf
2010 Tutorial on Deep Learning and Applications by Honglak Lee on nips2010 workshop.pdf
2010 Unsupervised Learning by ranzato on nips2010 workshop.pdf
2012 A Tutorial on Deep Learning by yukai.pdf
2012 Deep Learning Methods for Vision on cvpr2012.pdf
2013 Deep Learning for Computer Vision by Rob Fergus on icml2013.pdf
2013 Deep Learning for Vision Tricks of the Trade by ranzato on bavm2013.pdf
2013 Deep Learning of Representations by Yoshua Bengio on aaai2013.pdf
2013 Deep Learning of Representations by Yoshua Bengio on sstic2013.pdf
2013 Deep Learning Tutorial by lecun && ranzato on icml2013.pdf
2013 Large-Scale Visual Recognition With Deep Learning by ranzato on cvpr2013.pdf
2013 Recent Advances in Deep Learning by Kevin Duh.pdf
2013 Recent Developments in Deep Neural Networks by hinton on icassp2013.pdf
DeepLearning_SummerSchool\2012 Advanced Hierarchical Models by Salakhutdinov on ipam2012.pdf
DeepLearning_SummerSchool\2012 An Algebraic Perspective on Deep Learning on ipam2012.pdf
DeepLearning_SummerSchool\2012 An Informal Mathematical Tour of Feature Learning on ipam2012.pdf
DeepLearning_SummerSchool\2012 Deep Gated MRF's on ipam2012.pdf
DeepLearning_SummerSchool\2012 Deep Learning & Feature Learning Methods for Vision on ipam2012.pdf
DeepLearning_SummerSchool\2012 Deep learning in the visual cortex on ipam2012.pdf
DeepLearning_SummerSchool\2012 Deep Learning Tutorial by hinton on ipam2012.pdf
DeepLearning_SummerSchool\2012 Deep Learning, Graphical Models, EnergyBased Models, Structured Prediction by LeCun on ipam2012.pdf
DeepLearning_SummerSchool\2012 From natural scene statistics to models of neural coding and representation on ipam2012.pdf
DeepLearning_SummerSchool\2012 Introduction to MCMC for Deep Learning on ipam 2012.pdf
DeepLearning_SummerSchool\2012 Large-Scale Deep Learning on ipam2012.pdf
DeepLearning_SummerSchool\2012 Learning Hierarchical Generative Models on ipam2012.pdf
DeepLearning_SummerSchool\2012 Learning Hierarchies of Invariant Features by LeCun on ipam 2012.pdf
DeepLearning_SummerSchool\2012 Machine Learning and AI via Brain simulations by Andrew Ng on ipam2012.pdf
DeepLearning_SummerSchool\2012 Multiview Feature Learning on ipam2012.pdf
DeepLearning_SummerSchool\2012 Neural Networks Representation Non-linear hypotheses on ipam2012.pdf
DeepLearning_SummerSchool\2012 Scattering Invariant Deep Networks for Classification by Mallat on ipam2012.pdf
My deep learning reading list的更多相关文章
- 深度学习阅读列表 Deep Learning Reading List
Reading List List of reading lists and survey papers: Books Deep Learning, Yoshua Bengio, Ian Goodfe ...
- Deep learning Reading List
本文来自:http://jmozah.github.io/links/ Following is a growing list of some of the materials i found on ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...
- 机器学习(Machine Learning)&深入学习(Deep Learning)资料
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林. ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料汇总 (上)
转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Ma ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料
机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008 ...
- 机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...
- Deep Learning Papers Reading Roadmap
Deep Learning Papers Reading Roadmap https://github.com/songrotek/Deep-Learning-Papers-Reading-Roadm ...
随机推荐
- 团队项目NABCD
团队成员及项目简介 团队名:伍陸柒 团队成员: 李 俏(20132912 信1301-2) 郝 颖(20132919 信1301-2)http://www.cnblogs.com/haoying1 ...
- VUE AXIOS 跨域问题
背景: 后台跨域使用通配符:context.Response.Headers.Add("Access-Control-Allow-Origin", "*"); ...
- HDU 5661 Claris and XOR 贪心
题目链接: hdu:http://acm.hdu.edu.cn/showproblem.php?pid=5661 bc(中文):http://bestcoder.hdu.edu.cn/contests ...
- 如何解决Unsupported Architecture. Your executable contains unsupported architecture '[x86_64, i386]
APP改版测试后准备Archive发布时,结果居然出现题目中的错误提示.查了一下,如果archive的时候没有选[iOS](http://lib.csdn.net/base/ios) Devices ...
- DNS服务器的解析
---恢复内容开始--- DNS前言: 英特网作为域名和IP地址相互映射的一个分不式数据库,能够使用户更方便的访问互联网.而不用去记住能够被机器直接读取的IP地址的过程叫做域名解析(或主机名解析).D ...
- Week2-作业1 -阅读《构建之法》
第一章 在阅读第1.2.2节时,感受最深,记得开学初有老师就给我们分析过计算机专业和我们专业的区别,当时是给我们讲的是计算机科学注重的是理论,偏向于硬件方面,而软件工程则注重实践,偏向于软件方面.然很 ...
- DHCP:动态主机配置协议
DHCP(Dynamic Host Configuration Protocol,动态主机配置协议)是一个局域网的网络协议,使用UDP协议工作, 主要有两个用途:给内部网络或网络服务供应商自动分配IP ...
- wp开发(一)--应用发布篇
本文非常简单,适合刚刚刚刚入门的菜鸟,且针对的是wp8版本.wp8应用的发布总体来说没什么难度,只是有几个值得注意的地方,希望本文可以减少菜鸟们不必要的担心. 首先假设项目已经完成,且要发布到应用商城 ...
- 洛谷 P1972 [SDOI2009]HH的项链
不是裸题,鉴定完毕. 我是题面 对于这道题,我是离线做的... 树状数组吧,好些点 我们可以很轻易地得到一个很显然的结论,就是关于同一个数,我们只需要记录它不超过当前区间的最后一次出现的位置即可.举例 ...
- 基于注解的spring mvc 中使用 ajax json 的model
在 Spring mvc3中,响应.接受 JSON都十分方便. 使用注解@ResponseBody可以将结果(一个包含字符串和JavaBean的Map),转换成JSON. 使用 @RequestBod ...