[DeeplearningAI笔记]序列模型3.9-3.10语音辨识/CTC损失函数/触发字检测
5.3序列模型与注意力机制
觉得有用的话,欢迎一起讨论相互学习~Follow Me
3.9语音辨识 Speech recognition
- 问题描述 对于音频片段(audio clip)x ,y生成文本(transcript),人听见的或者麦克风捕捉的都是空气中细微的气压变化,语音识别系统能够根据这种微弱的气压变化将音频转化为文本字符。
- 将空气中微弱的气压变化显示成频率图的形式,并输出音频的文本内容如下图所示:

- 考虑到人的耳朵并不会处理声音的原始波形,而是通过一种特殊的物理结构来测量不同的频率和强度的声波,音频的常见预处理方式就是生成这样的 声谱图 ,同样的 横轴是时间,纵轴是声音的频率,而图中不同的颜色显示了声波的能量,也就是在不同的时间和频率上这些声音有多大

- 音位 过去的语音识别系统是依据 音位 来进行分辨的,即通过人为制定的音位符号来表示一个特定的语言,使用音位的符号标记就能使用机器合成出指定的语言。
- 进展 但是在 深度学习 这种端到端的学习系统中使用 音位 来表示声音符号已经不再有必要,而是可以构建一个系统,通过向系统中输入音频,然后直接输出音频的文本。而不需要用这种人工设计的表示方法。所以语音识别使用的数据集特别巨大,往往可以长达300多个小时甚至3000个小时的文本音频数据集。大型的商业系统中也训练了1W或者10W个小时。
注意力模型在语音识别中的应用
输入语音文本数据集的不同时间帧上的数据,并使用一个注意力模型输出文本描述。

CTC损失函数语音识别(Connectionist temporal classification)
Graves A, Gomez F. Connectionist temporal classification:labelling unsegmented sequence data with recurrent neural networks[C]// International Conference on Machine Learning. ACM, 2006:369-376.
示例 假设输入音频为 the quick brown fox ,这时使用一个新的网络,在这个例子中 输入 和 输出 的数量相等,在这里使用一个简单的 单向循环神经网络 作为例子,而 实际应用使用的往往是一个很大很深的双向LSTM或GIU结构的循环神经网络 通常输入的数量往往比输出的数量要多很多 比如你有一段10秒的音频,并且特征是100HZ的,即每秒有100个样本,于是这段10s的音频片段,就会有1000个输入。

- 但是音频文本识别的输出肯定没有1W个,所以可以用 空白字符 和 重复字符 来对其进行填充,其中 重复字符 可以用来重叠,而 空白字符 可以用来占位。
例如 **ttt_h_eee_\space__qqq__** \space 表示空格符,表示此处为单词的结尾,用来分割单词,而 “_ ” 表示用于占位的占位符,其中占位符中间的 重复字符 可以折叠。 **ttt_h_eee_\space__qqq__** 可以被处理为 the q 三个t,e,q都可以被折叠为一个字母,而占位符可以被忽略。
3.10触发字检测 Trigger word detection
- 随着语音识别的发展,越来越多的设备可以被你的声音 唤醒 ,这被称为 触发字检测系统

- 有关于 触发字检测 的文献还处于发展阶段,对于 触发字检测 的最好算法目前还没有一个广泛的定论。
- 首先将音频文件输入到RNN中,然后定义目标标签y

- 假如音频片段的一点处刚说完一个触发字,那么你就可以在训练集中把目标标签都设为0,然后此点目标签设为1.然后此点之后恢复成0,持续这个过程,只要触发了关键词,就将目标标签设置为1.
- 缺点 该算法构建了一个很不平衡的训练集,即0的出现次数比1的出现次数多出了很多。 为了解决这个问题可以在 关键词被触发 后输出多个1,以消除这种不平衡性。

[DeeplearningAI笔记]序列模型3.9-3.10语音辨识/CTC损失函数/触发字检测的更多相关文章
- [DeeplearningAI笔记]序列模型3.3集束搜索
5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.3 集束搜索Beam Search 对于机器翻译来说,给定输入的句子,会返回一个随机的英语翻译结果,但是你想要一 ...
- [DeeplearningAI笔记]序列模型1.10-1.12LSTM/BRNN/DeepRNN
5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.10长短期记忆网络(Long short term memory)LSTM Hochreiter S, Schmidhu ...
- [DeeplearningAI笔记]序列模型3.7-3.8注意力模型
5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.7注意力模型直观理解Attention model intuition 长序列问题 The problem of ...
- [DeeplearningAI笔记]序列模型3.6Bleu得分/机器翻译得分指标
5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.6Bleu得分 在机器翻译中往往对应有多种翻译,而且同样好,此时怎样评估一个机器翻译系统是一个难题. 常见的解决 ...
- [DeeplearningAI笔记]序列模型3.2有条件的语言模型与贪心搜索的不可行性
5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.2选择最可能的句子 Picking the most likely sentence condition lan ...
- [DeeplearningAI笔记]序列模型3.1基本的 Seq2Seq /image to Seq
5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.1基础模型 [1] Sutskever I, Vinyals O, Le Q V. Sequence to Se ...
- [DeeplearningAI笔记]序列模型1.7-1.9RNN对新序列采样/GRU门控循环神经网络
5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.7对新序列采样 基于词汇进行采样模型 在训练完一个模型之后你想要知道模型学到了什么,一种非正式的方法就是进行一次新序列采 ...
- [DeeplearningAI笔记]序列模型1.5-1.6不同类型的循环神经网络/语言模型与序列生成
5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.5不同类型的循环神经网络 上节中介绍的是 具有相同长度输入序列和输出序列的循环神经网络,但是对于很多应用\(T_{x}和 ...
- [DeeplearningAI笔记]序列模型1.3-1.4循环神经网络原理与反向传播公式
5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.3循环神经网络模型 为什么不使用标准的神经网络 假如将九个单词组成的序列作为输入,通过普通的神经网网络输出输出序列, 在 ...
随机推荐
- ES6的新特性(22)——Reflect
Reflect 概述 Reflect对象与Proxy对象一样,也是 ES6 为了操作对象而提供的新 API.Reflect对象的设计目的有这样几个. (1) 将Object对象的一些明显属于语言内部的 ...
- ES6的新特性(17)——Generator 函数的异步应用
Generator 函数的异步应用 异步编程对 JavaScript 语言太重要.Javascript 语言的执行环境是“单线程”的,如果没有异步编程,根本没法用,非卡死不可.本章主要介绍 Gener ...
- sprint1_11.15燃尽图(第二天)
找相关的图片资料用于做点餐系统的界面 燃尽图:
- LeetCode 206. Reverse Linked List(C++)
题目: Reverse a singly linked list. Example: Input: 1->2->3->4->5->NULL Output: 5->4 ...
- 2014-2015 ACM-ICPC, NEERC, Eastern Subregional Contest Problem G. The Debut Album
题目来源:http://codeforces.com/group/aUVPeyEnI2/contest/229669 时间限制:1s 空间限制:64MB 题目大意:给定n,a,b的值 求一个长度为n的 ...
- lintcode-439-线段树的构造 II
439-线段树的构造 II 线段树是一棵二叉树,他的每个节点包含了两个额外的属性start和end用于表示该节点所代表的区间.start和end都是整数,并按照如下的方式赋值: 根节点的 start ...
- 软工网络15团队作业4——Alpha阶段敏捷冲刺之Scrum 冲刺博客(Day1)
概述 Scrum 冲刺博客对整个冲刺阶段起到领航作用,应该主要包含三个部分的内容: ① 各个成员在 Alpha 阶段认领的任务 ② 明日各个成员的任务安排 ③ 整个项目预期的任务量(使用整数表示,与项 ...
- 【Java】对ArrayList排序
java如何对ArrayList中对象按照该对象某属性排序 (从小到大) 两种方法: 方法一:Comparator<KNNNode> comparator = new Comparator ...
- 面试- 阿里-. 大数据题目- 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?
假如每个url大小为10bytes,那么可以估计每个文件的大小为50G×64=320G,远远大于内存限制的4G,所以不可能将其完全加载到内存中处理,可以采用分治的思想来解决. Step1:遍历文件a, ...
- 当我们有多个类 继承同一个父类 这时候使用多态时候 可以使用该父类的类型做引用 不需要将object做引用
当我们有多个类 继承同一个父类 这时候使用多态时候 可以使用该父类的类型做引用 不需要将object做引用