fzu 2039 Pets (简单二分图 + (最大流 || 二分图))
Are you interested in pets? There is a very famous pets shop in the center of the ACM city. There are totally m pets in the shop, numbered from 1 to m. One day, there are n customers in the shop, which are numbered from 1 to n. In order to sell pets to as more customers as possible, each customer is just allowed to buy at most one pet. Now, your task is to help the manager to sell as more pets as possible.
Every customer would not buy the pets he/she is not interested in it, and every customer would like to buy one pet that he/she is interested in if possible.
Input
There is a single integer T in the first line of the test data indicating that there are T(T≤100) test cases. In the first line of each test case, there are three numbers n, m(0≤n,m≤100) and e(0≤e≤n*m). Here, n and m represent the number of customers and the number of pets respectively.
In the following e lines of each test case, there are two integers x(1≤x≤n), y(1≤y≤m) indicating that customer x is not interested in pet y, such that x would not buy y.
Output
For each test case, print a line containing the test case number (beginning with 1) and the maximum number of pets that can be sold out.
Sample Input
1 2 2 2 1 2 2 1
Sample Output
Case 1: 2
题目大意:有n个顾客。有m仅仅宠物,而且顾客有e个要求。要求内容为。第i号顾客不想买第j号宠物。问最多能卖多少仅仅宠物。
解题思路:能够用最大流。能够用匈牙利hungary算法来求二分图。
最大流的时候。要注意拆点。建立一个超级源点连接全部的顾客,容量为INF。建立一个超级汇点使全部宠物连向他,容量为INF。
顾客和宠物各自拆成两个点,容量为1,这样能够保证,每一个顾客仅仅能买一仅仅宠物,每仅仅宠物仅仅能被一个顾客购买。然后依据e个要求,建立顾客和宠物之间的边,容量为1,之后求最大流。这种方法更复杂更耗时。所以这题最好用匈牙利算法。
最大流
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <queue>
using namespace std;
typedef long long ll;
const int N = 1005;
const int OF1 = 100;
const int OF2 = 200;
const int FIN = 505;
const int INF = 0x3f3f3f3f;
int n, m, e, f[N][N], s, t;
struct Edge{
int from, to, cap, flow;
};
vector<Edge> edges;
vector<int> G[N];
void init() {
s = 0, t = FIN;
for (int i = 0; i < N; i++) G[i].clear();
edges.clear();
memset(f, 0, sizeof(f));
}
void addEdge(int from, int to, int cap, int flow) {
edges.push_back((Edge){from, to, cap, 0});
edges.push_back((Edge){to, from, 0, 0});
int temp = edges.size();
G[from].push_back(temp - 2);
G[to].push_back(temp - 1);
}
void input() {
int a, b;
for (int i = 0; i < e; i++) {
scanf("%d %d", &a, &b);
f[a][b] = 1;
}
for (int i = 1; i <= n; i++) {
addEdge(0, i, INF, 0);
addEdge(i, i + OF1, 1, 0);
}
for (int i = 1; i <= m; i++) {
addEdge(i + OF2, i + OF2 + OF1, 1, 0);
addEdge(i + OF2 + OF1, FIN, INF, 0);
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (!f[i][j]) {
addEdge(i + OF1, j + OF2, 1, 0);
}
}
}
}
int vis[N], d[N];
int BFS() {
memset(vis, 0, sizeof(vis));
// for (int i = 0; i < FIN; i++) d[N] = INF;
queue<int> Q;
Q.push(s);
d[s] = 0;
vis[s] = 1;
while (!Q.empty()) {
int u = Q.front(); Q.pop();
for (int i = 0; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (!vis[e.to] && e.cap > e.flow) {
vis[e.to] = 1;
d[e.to] = d[u] + 1;
Q.push(e.to);
}
}
}
return vis[t];
}
int cur[N];
int DFS(int u, int a) {
if (u == t || a == 0) return a;
int flow = 0, f;
for (int &i = cur[u]; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (d[u] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0) {
e.flow += f;
edges[G[u][i]^1].flow -= f;
flow += f;
a -= f;
if (a == 0) break;
}
}
return flow;
}
int MF() {
int ans = 0;
while (BFS()) {
memset(cur, 0, sizeof(cur));
ans += DFS(s, INF);
}
return ans;
}
int main() {
int T, Case = 1;
scanf("%d", &T);
while (T--) {
printf("Case %d: ", Case++);
scanf("%d %d %d", &n, &m, &e);
init();
input();
int ans = MF();
printf("%d\n", ans);
}
return 0;
}
匈牙利算法
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
using namespace std;
typedef __int64 ll;
const int N = 505;
int n, m, e, ans;
int G[N][N], vis[N], R[N];
void input() {
memset(G, 1, sizeof(G));
memset(R, 0, sizeof(R));
int a, b;
for (int i = 0; i < e; i++) {
scanf("%d %d", &a, &b);
G[a][b] = 0;
}
}
int find(int x) {
for (int i = 1; i <= m; i++) {
if (G[x][i] && !vis[i]) {
vis[i] = 1;
if (R[i] == 0 || find(R[i])) {
R[i] = x;
return 1;
}
}
}
return 0;
}
void hungary() {
for (int i = 1; i <= n; i++) {
memset(vis, 0, sizeof(vis));
if (find(i)) ans++;
}
}
int main() {
int T, Case = 1;
scanf("%d", &T);
while (T--) {
printf("Case %d: ", Case++);
ans = 0;
scanf("%d %d %d", &n, &m, &e);
input();
hungary();
printf("%d\n", ans);
}
return 0;
}
fzu 2039 Pets (简单二分图 + (最大流 || 二分图))的更多相关文章
- FZU - 2039 Pets (二分图匹配 2011年全国大学生程序设计邀请赛(福州))
Description Are you interested in pets? There is a very famous pets shop in the center of the ACM ci ...
- 【bzoj3291】Alice与能源计划 模拟费用流+二分图最大匹配
题目描述 在梦境中,Alice来到了火星.不知为何,转眼间Alice被任命为火星能源部长,并立刻面临着一个严峻的考验. 为了方便,我们可以将火星抽象成平面,并建立平面直角坐标系.火星上一共有N个居民点 ...
- 利用JS实现简单的瀑布流效果
哈哈, 我又来啦, 在这一段时间里, 我简单的学习了一下javascript(JS), 虽然不是很懂啦, 但是我也简单的尝试着做了点小东西, 就比如现在流行的瀑布流效果, 经过我的努力终于成功的完成了 ...
- POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Network / FZU 1161 (网络流,最大流)
POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Networ ...
- 经典网络流题目模板(P3376 + P2756 + P3381 : 最大流 + 二分图匹配 + 最小费用最大流)
题目来源 P3376 [模板]网络最大流 P2756 飞行员配对方案问题 P3381 [模板]最小费用最大流 最大流 最大流问题是网络流的经典类型之一,用处广泛,个人认为网络流问题最具特点的操作就是建 ...
- POJ2195 Going Home[费用流|二分图最大权匹配]
Going Home Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22088 Accepted: 11155 Desc ...
- POJ2195 Going Home (最小费最大流||二分图最大权匹配) 2017-02-12 12:14 131人阅读 评论(0) 收藏
Going Home Description On a grid map there are n little men and n houses. In each unit time, every l ...
- 【BZOJ 3308】 3308: 九月的咖啡店 (费用流|二分图最大权匹配)
3308: 九月的咖啡店 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 244 Solved: 86 Description 深绘里在九份开了一家咖 ...
- hdu 3081(二分+并查集+最大流||二分图匹配)
Marriage Match II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
随机推荐
- Codeforces Gym100814 F.Geometry (ACM International Collegiate Programming Contest, Egyptian Collegiate Programming Contest (2015) Arab Academy for Science and Technology)
这个题真的是超级超级水啊,哈哈哈哈哈哈.不要被题面吓到,emnnn,就这样... 代码: 1 #include<iostream> 2 #include<cstring> 3 ...
- Codeforces Gym 101471D Money for Nothing(2017 ACM-ICPC World Finals D题,决策单调性)
题目链接 2017 ACM-ICPC World Finals Problem D (这题细节真的很多) 把所有的(pi,di)按横坐标升序排序. 对于某个点,若存在一个点在他左下角,那么这个点就是 ...
- UVA 11389 The Bus Driver Problem 贪心水题
题目链接:UVA - 11389 题意描述:有n个司机,n个早班路线和n个晚班路线,给每个司机安排一个早班路线和一个晚班路线,使得每个早班路线和晚班路线只属于一个司机.如果一个司机早班和晚班总的驾驶时 ...
- smartsvn学习(-)
3. Day-to-day use 3.1 Everyday commands Most of the common commands you will need are in the SmartSV ...
- dedecms调用新闻文章列表
效果如下: 代码如下: <div class="list"> <ul class="d6 ico4"> {dede:list pages ...
- 对ps4 cmask fmask的理解
这俩都是绑在corlor target上8x8的格子 cmask 做fastclear 这个比较好理解,8x8来表示这个格子是否clear fmask msaa用 provided to suppor ...
- [转]MySQL的简单使用和JDBC示例
MySql简单操作 //启动mysql net start mysql //登陆 mysql -u root -p //创建建数据库 create database mydb; create data ...
- Interleaving String——是否由两个string交叉、DP
Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2. For example,Given:s1 = ...
- JS门面模式
门面模式 前言 门面模式的本质是实现一个简单的同一接口来处理对各个子系统接口的处理和调用.和桥接模式不同的是:桥接模式中的各个类是全然独立的,桥接模式仅仅在必要的时候将这些类关联起来. 门面模式则有点 ...
- HTTP基础(分析两个例子)
两个例子(一个get,一个post)(一个是访问页面,一个是提交修改后的博文): preferences.aspx:(header)(文件) 1. Remote Address:42.121. ...