Are you interested in pets? There is a very famous pets shop in the center of the ACM city. There are totally m pets in the shop, numbered from 1 to m. One day, there are n customers in the shop, which are numbered from 1 to n. In order to sell pets to as more customers as possible, each customer is just allowed to buy at most one pet. Now, your task is to help the manager to sell as more pets as possible.



Every customer would not buy the pets he/she is not interested in it, and every customer would like to buy one pet that he/she is interested in if possible.

Input

There is a single integer T in the first line of the test data indicating that there are T(T≤100) test cases. In the first line of each test case, there are three numbers n, m(0≤n,m≤100) and e(0≤e≤n*m). Here, n and m represent the number of customers and the number of pets respectively.

In the following e lines of each test case, there are two integers x(1≤x≤n), y(1≤y≤m) indicating that customer x is not interested in pet y, such that x would not buy y.

Output

For each test case, print a line containing the test case number (beginning with 1) and the maximum number of pets that can be sold out.

Sample Input

1 2 2 2 1 2 2 1

Sample Output

Case 1: 2

题目大意:有n个顾客。有m仅仅宠物,而且顾客有e个要求。要求内容为。第i号顾客不想买第j号宠物。问最多能卖多少仅仅宠物。

解题思路:能够用最大流。能够用匈牙利hungary算法来求二分图。

最大流的时候。要注意拆点。建立一个超级源点连接全部的顾客,容量为INF。建立一个超级汇点使全部宠物连向他,容量为INF。

顾客和宠物各自拆成两个点,容量为1,这样能够保证,每一个顾客仅仅能买一仅仅宠物,每仅仅宠物仅仅能被一个顾客购买。然后依据e个要求,建立顾客和宠物之间的边,容量为1,之后求最大流。这种方法更复杂更耗时。所以这题最好用匈牙利算法。

最大流

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <queue>
using namespace std;
typedef long long ll;
const int N = 1005;
const int OF1 = 100;
const int OF2 = 200;
const int FIN = 505;
const int INF = 0x3f3f3f3f;
int n, m, e, f[N][N], s, t;
struct Edge{
int from, to, cap, flow;
}; vector<Edge> edges;
vector<int> G[N]; void init() {
s = 0, t = FIN;
for (int i = 0; i < N; i++) G[i].clear();
edges.clear();
memset(f, 0, sizeof(f));
} void addEdge(int from, int to, int cap, int flow) {
edges.push_back((Edge){from, to, cap, 0});
edges.push_back((Edge){to, from, 0, 0});
int temp = edges.size();
G[from].push_back(temp - 2);
G[to].push_back(temp - 1);
}
void input() {
int a, b;
for (int i = 0; i < e; i++) {
scanf("%d %d", &a, &b);
f[a][b] = 1;
}
for (int i = 1; i <= n; i++) {
addEdge(0, i, INF, 0);
addEdge(i, i + OF1, 1, 0);
}
for (int i = 1; i <= m; i++) {
addEdge(i + OF2, i + OF2 + OF1, 1, 0);
addEdge(i + OF2 + OF1, FIN, INF, 0);
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (!f[i][j]) {
addEdge(i + OF1, j + OF2, 1, 0);
}
}
}
}
int vis[N], d[N];
int BFS() {
memset(vis, 0, sizeof(vis));
// for (int i = 0; i < FIN; i++) d[N] = INF;
queue<int> Q;
Q.push(s);
d[s] = 0;
vis[s] = 1;
while (!Q.empty()) {
int u = Q.front(); Q.pop();
for (int i = 0; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (!vis[e.to] && e.cap > e.flow) {
vis[e.to] = 1;
d[e.to] = d[u] + 1;
Q.push(e.to);
}
}
}
return vis[t];
} int cur[N];
int DFS(int u, int a) {
if (u == t || a == 0) return a;
int flow = 0, f;
for (int &i = cur[u]; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (d[u] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0) {
e.flow += f;
edges[G[u][i]^1].flow -= f;
flow += f;
a -= f;
if (a == 0) break;
}
}
return flow;
}
int MF() {
int ans = 0;
while (BFS()) {
memset(cur, 0, sizeof(cur));
ans += DFS(s, INF);
}
return ans;
}
int main() {
int T, Case = 1;
scanf("%d", &T);
while (T--) {
printf("Case %d: ", Case++);
scanf("%d %d %d", &n, &m, &e);
init();
input();
int ans = MF();
printf("%d\n", ans);
}
return 0;
}

匈牙利算法

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
using namespace std;
typedef __int64 ll;
const int N = 505;
int n, m, e, ans;
int G[N][N], vis[N], R[N];
void input() {
memset(G, 1, sizeof(G));
memset(R, 0, sizeof(R));
int a, b;
for (int i = 0; i < e; i++) {
scanf("%d %d", &a, &b);
G[a][b] = 0;
}
}
int find(int x) {
for (int i = 1; i <= m; i++) {
if (G[x][i] && !vis[i]) {
vis[i] = 1;
if (R[i] == 0 || find(R[i])) {
R[i] = x;
return 1;
}
}
}
return 0;
}
void hungary() {
for (int i = 1; i <= n; i++) {
memset(vis, 0, sizeof(vis));
if (find(i)) ans++;
}
}
int main() {
int T, Case = 1;
scanf("%d", &T);
while (T--) {
printf("Case %d: ", Case++);
ans = 0;
scanf("%d %d %d", &n, &m, &e);
input();
hungary();
printf("%d\n", ans);
}
return 0;
}

fzu 2039 Pets (简单二分图 + (最大流 || 二分图))的更多相关文章

  1. FZU - 2039 Pets (二分图匹配 2011年全国大学生程序设计邀请赛(福州))

    Description Are you interested in pets? There is a very famous pets shop in the center of the ACM ci ...

  2. 【bzoj3291】Alice与能源计划 模拟费用流+二分图最大匹配

    题目描述 在梦境中,Alice来到了火星.不知为何,转眼间Alice被任命为火星能源部长,并立刻面临着一个严峻的考验. 为了方便,我们可以将火星抽象成平面,并建立平面直角坐标系.火星上一共有N个居民点 ...

  3. 利用JS实现简单的瀑布流效果

    哈哈, 我又来啦, 在这一段时间里, 我简单的学习了一下javascript(JS), 虽然不是很懂啦, 但是我也简单的尝试着做了点小东西, 就比如现在流行的瀑布流效果, 经过我的努力终于成功的完成了 ...

  4. POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Network / FZU 1161 (网络流,最大流)

    POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Networ ...

  5. 经典网络流题目模板(P3376 + P2756 + P3381 : 最大流 + 二分图匹配 + 最小费用最大流)

    题目来源 P3376 [模板]网络最大流 P2756 飞行员配对方案问题 P3381 [模板]最小费用最大流 最大流 最大流问题是网络流的经典类型之一,用处广泛,个人认为网络流问题最具特点的操作就是建 ...

  6. POJ2195 Going Home[费用流|二分图最大权匹配]

    Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 22088   Accepted: 11155 Desc ...

  7. POJ2195 Going Home (最小费最大流||二分图最大权匹配) 2017-02-12 12:14 131人阅读 评论(0) 收藏

    Going Home Description On a grid map there are n little men and n houses. In each unit time, every l ...

  8. 【BZOJ 3308】 3308: 九月的咖啡店 (费用流|二分图最大权匹配)

    3308: 九月的咖啡店 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 244  Solved: 86 Description 深绘里在九份开了一家咖 ...

  9. hdu 3081(二分+并查集+最大流||二分图匹配)

    Marriage Match II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

随机推荐

  1. iscsi 学习

    iscsi-initiator-utils-6.2.0.872-10.el6.x86_64 iscsi-initiator-utils-6.2.0.873-32.el7.x86_64 在el7中, i ...

  2. linux 常用命令: runuser

    rpm: coreutils-8.4-9.el6.x86_64 runuser --help 用法:runuser [选项]... [-] [用户 [参数]... ] Change the effec ...

  3. Educational Codeforces Round 39 (Rated for Div. 2) B. Weird Subtraction Process[数论/欧几里得算法]

    https://zh.wikipedia.org/wiki/%E8%BC%BE%E8%BD%89%E7%9B%B8%E9%99%A4%E6%B3%95 取模也是一样的,就当多减几次. 在欧几里得最初的 ...

  4. HDU5877 Weak Pair

    题目链接 Weak Pair 题意十分明确, 就是求出符合题意的有序点对个数. 首先对ai离散,离散之后的结果用rk[i]表示,然后进行二分预处理得到f[i],其中f[i]的意义为:其他的点和i这个节 ...

  5. Spring Cloud Stream介绍-Spring Cloud学习第八天(非原创)

    文章大纲 一.什么是Spring Cloud Stream二.Spring Cloud Stream使用介绍三.Spring Cloud Stream使用细节四.参考文章 一.什么是Spring Cl ...

  6. Centos7下实现多虚拟机互信

    假设CentOS 7三台虚拟机A(192.168.111.10).B(192.168.111.11).C(192.168.111.12),需要保证三台虚拟机之间网络的连通性. 操作步骤: 一.在A机上 ...

  7. IIS配置支持apk文件下载

    写在前面 最近项目中涉及到移动端的东西,有一个功能是要下载apk文件,apk为安卓安装程序,但是iis默认是不支持该类型的文件下载的. 解决方案 找到该站点,并切换到功能视图 找到MIME类型,双击进 ...

  8. iOS进行单元测试OCUnit+xctool

    单元测试 什么是单元测试 wiki解释 简单说来就是为你的方法多专门写一个测试函数.以保证你的方法在不停的修改开发中.保持正确.如果出错,第一时间让你知道,这样从最小单位开始监控来保证软件的质量. 我 ...

  9. 11G在用EXP导出时,空表不能导出

    11G中有个新特性,当表无数据时,不分配segment,以节省空间 解决方法: 1.insert一行,再rollback就产生segment了. 该方法是在在空表中插入数据,再删除,则产生segmen ...

  10. hdu4493(C++)

    //卡格式的题目 #include<iostream> #include<iomanip>using namespace std;int main(){ int T,i; do ...