Distance Queries
Time Limit: 2000MS   Memory Limit: 30000K
Total Submissions: 11304   Accepted: 3985
Case Time Limit: 1000MS

Description

Farmer John's cows refused to run in his marathon since he chose a path much too long for their leisurely lifestyle. He therefore wants to find a path of a more reasonable length. The input to this problem consists of the same input as in "Navigation Nightmare",followed by a line containing a single integer K, followed by K "distance queries". Each distance query is a line of input containing two integers, giving the numbers of two farms between which FJ is interested in computing distance (measured in the length of the roads along the path between the two farms). Please answer FJ's distance queries as quickly as possible! 

Input

* Lines 1..1+M: Same format as "Navigation Nightmare"

* Line 2+M: A single integer, K. 1 <= K <= 10,000

* Lines 3+M..2+M+K: Each line corresponds to a distance query and contains the indices of two farms.

Output

* Lines 1..K: For each distance query, output on a single line an integer giving the appropriate distance. 

Sample Input

7 6
1 6 13 E
6 3 9 E
3 5 7 S
4 1 3 N
2 4 20 W
4 7 2 S
3
1 6
1 4
2 6

Sample Output

13
3
36
学习LCA的好文章:http://taop.marchtea.com/04.04.html
离线:将所有查询输入完毕后再统一输出结果。
在线:查询一个输出一个。 dfs+并查集,离线
#include <cstdio>
#include <vector>
using namespace std;
const int MAXN=;
int n,m,k;
struct Edge{
int to,w;
Edge(){}
Edge(int to,int w)
{
this->to=to;
this->w=w;
}
};
vector<Edge> arc[MAXN]; struct Node{
int to,id;
Node(){}
Node(int to,int id)
{
this->to=to;
this->id=id;
}
};
vector<Node> que[MAXN]; int par[MAXN];
void prep()
{
for(int i=;i<MAXN;i++)
{
d[i]=;
vis[i]=;
par[i]=i;
}
}
int fnd(int x)
{
if(par[x]==x)
{
return x;
}
return par[x]=fnd(par[x]);
}
void unite(int fa,int son)
{
int a=fnd(fa);
int b=fnd(son);
par[b]=a;
} int vis[MAXN],d[MAXN];
int res[MAXN];
void tarjan(int u)
{
vis[u]=;
for(int i=,size=que[u].size();i<size;i++)
{
Node nod=que[u][i];
if(vis[nod.to])
{
int lca=fnd(nod.to);
res[nod.id]=d[nod.to]+d[u]-*d[lca];
}
}
for(int i=,size=arc[u].size();i<size;i++)
{
Edge e=arc[u][i];
if(!vis[e.to])
{
d[e.to]=d[u]+e.w;
tarjan(e.to);
unite(u,e.to);
}
}
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
prep();
for(int i=;i<=n;i++) arc[i].clear();
for(int i=;i<m;i++)
{
int u,v,w;
scanf("%d %d %d %*c",&u,&v,&w);
arc[u].push_back(Edge(v,w));
arc[v].push_back(Edge(u,w));
}
scanf("%d",&k);
for(int i=;i<k;i++)
{
int u,v;
scanf("%d%d",&u,&v);
que[v].push_back(Node(u,i));
que[u].push_back(Node(v,i));
}
for(int i=;i<=n;i++)
{
if(!vis[i])
{
tarjan(i);
}
}
for(int i=;i<k;i++)
{
printf("%d\n",res[i]);
}
}
return ;
}
模板:RMQ求LCA在线算法(稀疏表实现RMQ)
#include <cstdio>
#include <cstring>
#include <vector>
#include <math.h>
#include <algorithm>
using namespace std;
const int MAXN=;
int n,m,k;
struct Edge{
int to,w;
Edge(){}
Edge(int to,int w)
{
this->to=to;
this->w=w;
}
};
vector<Edge> arc[MAXN]; int vs[MAXN+MAXN],depth[MAXN+MAXN],first[MAXN],tot;
int d[MAXN],vis[MAXN];
void dfs(int u,int dep)
{
vis[u]=;
vs[++tot]=u;
depth[tot]=dep;
first[u]=tot;
for(int i=,size=arc[u].size();i<size;i++)
{
Edge e=arc[u][i];
if(!vis[e.to])
{
d[e.to]=d[u]+e.w;
dfs(e.to,dep+);
vs[++tot]=u;
depth[tot]=dep;
}
}
} int dp[MAXN+MAXN][];
void init_st(int size)
{
for(int i=;i<=size;i++) dp[i][]=i;
for(int j=;j<;j++)
{
for(int i=;i<=size;i++)
{
if(i+(<<j)-<=size)
{
int a=dp[i][j-];
int b=dp[i+(<<(j-))][j-];
dp[i][j]=depth[a]<depth[b]?a:b;
}
}
}
}
int rmq_st(int l,int r)
{
int limit=(int)(log(r-l+1.0)/(log(2.0)));
int a=dp[l][limit];
int b=dp[r-(<<limit)+][limit];
return depth[a]<depth[b]?a:b;
} int LCA(int u,int v)
{
if(first[u]>first[v]) swap(u,v);
int id=rmq_st(first[u],first[v]);
return vs[id];
} int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
tot=;
memset(vis,,sizeof(vis));
memset(d,,sizeof(d));
for(int i=;i<=n;i++) arc[i].clear();
for(int i=;i<m;i++)
{
int u,v,w;
scanf("%d %d %d %*c",&u,&v,&w);
arc[u].push_back(Edge(v,w));
arc[v].push_back(Edge(u,w));
}
for(int i=;i<=n;i++)
{
if(!vis[i])
{
dfs(i,);
}
}
init_st(tot);
scanf("%d",&k);
for(int i=;i<k;i++)
{
int u,v;
scanf("%d%d",&u,&v);
int lca=LCA(u,v);
int res=d[u]+d[v]-*d[lca];
printf("%d\n",res);
}
}
return ;
}
												

POJ1986(LCA应用:求两结点之间距离)的更多相关文章

  1. hdoj 1869 六度分离【最短路径求两两边之间最长边】

    六度分离 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  2. 求两个数之间的质数 -----------基于for循环 算法思想

    前端代码: <%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.as ...

  3. js求连个数之间的数字

    整理出自项目中一个需求,求两个数之间的数字. const week = function(arr,arr2){ let a=parseInt(arr); let b=parseInt(arr2); l ...

  4. 「POJ-3608」Bridge Across Islands (旋转卡壳--求两凸包距离)

    题目链接 POJ-3608 Bridge Across Islands 题意 依次按逆时针方向给出凸包,在两个凸包小岛之间造桥,求最小距离. 题解 旋转卡壳的应用之一:求两凸包的最近距离. 找到凸包 ...

  5. 求两点之间距离 C++

    求两点之间距离(20 分) 定义一个Point类,有两个数据成员:x和y, 分别代表x坐标和y坐标,并有若干成员函数. 定义一个函数Distance(), 用于求两点之间的距离.输入格式: 输入有两行 ...

  6. 旋转卡壳求两个凸包最近距离poj3608

    #include <iostream> #include <cmath> #include <vector> #include <string.h> # ...

  7. JavaScript求两个数字之间所有数字的和

    这是在fcc上的中级算法中的第一题,拉出来的原因并不是因为有什么好说的,而是我刚看时以为是求两个数字的和, 很显然错了.我感觉自己的文字理解能力被严重鄙视了- -.故拉出来折腾折腾. 要求: 给你一个 ...

  8. GPS(2)关于位置的3个示例,实时获取GPS定位数据,求两个经纬点距离,邻近某个区域圆时警告

    实时获取GPS定位数据 import android.app.Activity; import android.content.Context; import android.location.Loc ...

  9. js 求两个日期之间相差天数

    //求两个日期之间的相差天数 function daysBetween(DateOne, DateTwo) { var OneMonth = DateOne.substring(5, DateOne. ...

随机推荐

  1. IPv4地址(一)概述

    IPv4地址的长度是多少? IPv4地址是如何表示的? IPv4地址的构成以及每一部分所起到的作用和占的位数特点? IPv4地址长度为32位. IPv4地址分为两部分:网络号和主机号 网络号部分惟一地 ...

  2. 11 redis之rdb快照持久化

    一:Redis持久化配置 Redis的持久化有2种方式[快照,是日志] 二:Rdb快照的配置选项 save 900 1 // 900内,有1条写入,则产生快照 save 300 1000 // 如果3 ...

  3. 目标检测之hog(梯度方向直方图)---hog简介0

    梯度直方图特征(HOG) 是一种对图像局部重叠区域的密集型描述符, 它通过计算局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功 ...

  4. onvif 开发之video streamer---onvif实现功能和经验

    目录(?)[-] 一产生onvif源码框架 从wsdl生成C头文件 从头文件生成源码框架 二创建soap运行环境 三RTSP视频对接 实现GetCapabilities命令 实现GetServices ...

  5. js new一个函数和直接调用函数的差别

    用new和调用一个函数的差别:假设函数返回值是一个值类型(Number.String.Boolen)时,new函数将会返回这个函数的实例对象.而假设这个函数的返回值是一个引用类型(Object.Arr ...

  6. EasyPlayerPro windows播放器之多窗口播放音量控制方法

    EasyPlayerPro-win基础版本的音频播放为单一通道播放,即同一时间仅允许一个通道播放声音,现应客户需求,在基础版本上实现独立的音频播放,即每个通道可同时播放视频和音频; 设计思路 将音频播 ...

  7. C#操作XML方法:新增、修改和删除节点与属性

    一 前言 先来了解下操作XML所涉及到的几个类及之间的关系  如果大家发现少写了一些常用的方法,麻烦在评论中指出,我一定会补上的!谢谢大家 * 1 XMLElement 主要是针对节点的一些属性进行操 ...

  8. iOS与H5交互及UIWebView缓存

    iOS原生App与H5页面交互笔记 最近在做一个项目用到了原生App与H5交互,之前有做过简单的H5页面直接调用原生方法的例子,就是利用UIWebView中的代理方法 //webview每次加载之前都 ...

  9. postgres 备份数据库

    https://www.postgresql.org/docs/9.1/static/app-pgdump.html bash-4.2$ pg_dump -Fc xianlan_prod > / ...

  10. PR 批量导入

    REPORT  ZMM_UPLOAD_PR. DATA: BEGIN OF GT_DATA1 OCCURS 0,            BSART   TYPE STRING, "凭证类型  ...