降维算法-PCA主成分分析
1、PCA算法介绍
主成分分析(Principal Components Analysis),简称PCA,是一种数据降维技术,用于数据预处理。一般我们获取的原始数据维度都很高,比如1000个特征,在这1000个特征中可能包含了很多无用的信息或者噪声,真正有用的特征才100个,那么我们可以运用PCA算法将1000个特征降到100个特征。这样不仅可以去除无用的噪声,还能减少很大的计算量。
PCA算法是如何实现的?
简单来说,就是将数据从原始的空间中转换到新的特征空间中,例如原始的空间是三维的(x,y,z),x、y、z分别是原始空间的三个基,我们可以通过某种方法,用新的坐标系(a,b,c)来表示原始的数据,那么a、b、c就是新的基,它们组成新的特征空间。在新的特征空间中,可能所有的数据在c上的投影都接近于0,即可以忽略,那么我们就可以直接用(a,b)来表示数据,这样数据就从三维的(x,y,z)降到了二维的(a,b)。
问题是如何求新的基(a,b,c)?
一般步骤是这样的:先对原始数据零均值化,然后求协方差矩阵,接着对协方差矩阵求特征向量和特征值,这些特征向量组成了新的特征空间。具体的细节,推荐Andrew Ng的网页教程:Ufldl 主成分分析 ,写得很详细。
(1)零均值化
def zeroMean(dataMat):
meanVal=np.mean(dataMat,axis=0) #按列求均值,即求各个特征的均值
newData=dataMat-meanVal
return newData,meanVal
该函数返回两个变量,newData是零均值化后的数据,meanVal是每个特征的均值,是给后面重构数据用的。
(2)求协方差矩阵
newData,meanVal=zeroMean(dataMat)
covMat=np.cov(newData,rowvar=0)
numpy中的cov函数用于求协方差矩阵,参数rowvar很重要!若rowvar=0,说明传入的数据一行代表一个样本,若非0,说明传入的数据一列代表一个样本。因为newData每一行代表一个样本,所以将rowvar设置为0。
covMat即所求的协方差矩阵。
(3)求特征值、特征矩阵
调用numpy中的线性代数模块linalg中的eig函数,可以直接由covMat求得特征值和特征向量:
eigVals,eigVects=np.linalg.eig(np.mat(covMat))
eigVals存放特征值,行向量。
eigVects存放特征向量,每一列带别一个特征向量。
特征值和特征向量是一一对应的
(4)保留主要的成分[即保留值比较大的前n个特征]
第三步得到了特征值向量eigVals,假设里面有m个特征值,我们可以对其排序,排在前面的n个特征值所对应的特征向量就是我们要保留的,它们组成了新的特征空间的一组基n_eigVect。将零均值化后的数据乘以n_eigVect就可以得到降维后的数据。代码如下:
eigValIndice=np.argsort(eigVals) #对特征值从小到大排序
n_eigValIndice=eigValIndice[-1:-(n+1):-1] #最大的n个特征值的下标
n_eigVect=eigVects[:,n_eigValIndice] #最大的n个特征值对应的特征向量
lowDDataMat=newData*n_eigVect #低维特征空间的数据
reconMat=(lowDDataMat*n_eigVect.T)+meanVal #重构数据
return lowDDataMat,reconMat
代码中有几点要说明一下,首先argsort对特征值是从小到大排序的,那么最大的n个特征值就排在后面,所以eigValIndice[-1:-(n+1):-1]就取出这个n个特征值对应的下标。【python里面,list[a:b:c]代表从下标a开始到b,步长为c。】
reconMat是重构的数据,乘以n_eigVect的转置矩阵,再加上均值meanVal。
OK,这四步下来就可以从高维的数据dataMat得到低维的数据lowDDataMat,另外,程序也返回了重构数据reconMat,有些时候reconMat课便于数据分析。
贴一下总的代码:
#零均值化
def zeroMean(dataMat):
meanVal=np.mean(dataMat,axis=0) #按列求均值,即求各个特征的均值
newData=dataMat-meanVal
return newData,meanVal def pca(dataMat,n):
newData,meanVal=zeroMean(dataMat)
covMat=np.cov(newData,rowvar=0) #求协方差矩阵,return ndarray;若rowvar非0,一列代表一个样本,为0,一行代表一个样本 eigVals,eigVects=np.linalg.eig(np.mat(covMat))#求特征值和特征向量,特征向量是按列放的,即一列代表一个特征向量
eigValIndice=np.argsort(eigVals) #对特征值从小到大排序
n_eigValIndice=eigValIndice[-1:-(n+1):-1] #最大的n个特征值的下标
n_eigVect=eigVects[:,n_eigValIndice] #最大的n个特征值对应的特征向量
lowDDataMat=newData*n_eigVect #低维特征空间的数据
reconMat=(lowDDataMat*n_eigVect.T)+meanVal #重构数据
return lowDDataMat,reconMat
3、选择主成分个数
文章写到这里还没有完,应用PCA的时候,对于一个1000维的数据,我们怎么知道要降到几维的数据才是合理的?即n要取多少,才能保留最多信息同时去除最多的噪声?一般,我们是通过方差百分比来确定n的,这一点在Ufldl教程中说得很清楚,并且有一条简单的公式,下面是该公式的截图:
根据这条公式,可以写个函数,函数传入的参数是百分比percentage和特征值向量,然后根据percentage确定n,代码如下:
def percentage2n(eigVals,percentage):
sortArray=np.sort(eigVals) #升序
sortArray=sortArray[-1::-1] #逆转,即降序
arraySum=sum(sortArray)
tmpSum=0
num=0
for i in sortArray:
tmpSum+=i
num+=1
if tmpSum>=arraySum*percentage:
return num
那么pca函数也可以重写成百分比版本,默认百分比99%。
def pca(dataMat,percentage=0.99):
newData,meanVal=zeroMean(dataMat)
covMat=np.cov(newData,rowvar=0) #求协方差矩阵,return ndarray;若rowvar非0,一列代表一个样本,为0,一行代表一个样本
eigVals,eigVects=np.linalg.eig(np.mat(covMat))#求特征值和特征向量,特征向量是按列放的,即一列代表一个特征向量
n=percentage2n(eigVals,percentage) #要达到percent的方差百分比,需要前n个特征向量
eigValIndice=np.argsort(eigVals) #对特征值从小到大排序
n_eigValIndice=eigValIndice[-1:-(n+1):-1] #最大的n个特征值的下标
n_eigVect=eigVects[:,n_eigValIndice] #最大的n个特征值对应的特征向量
lowDDataMat=newData*n_eigVect #低维特征空间的数据
reconMat=(lowDDataMat*n_eigVect.T)+meanVal #重构数据
return lowDDataMat,reconMat
作者:wepon_
来源:CSDN
原文:https://blog.csdn.net/u012162613/article/details/42177327
版权声明:本文为博主原创文章,转载请附上博文链接!
降维算法-PCA主成分分析的更多相关文章
- 机器学习 - 算法 - PCA 主成分分析
PCA 主成分分析 原理概述 用途 - 降维中最常用的手段 目标 - 提取最有价值的信息( 基于方差 ) 问题 - 降维后的数据的意义 ? 所需数学基础概念 向量的表示 基变换 协方差矩阵 协方差 优 ...
- 机器学习实战基础(二十一):sklearn中的降维算法PCA和SVD(二) PCA与SVD 之 降维究竟是怎样实现
简述 在降维过程中,我们会减少特征的数量,这意味着删除数据,数据量变少则表示模型可以获取的信息会变少,模型的表现可能会因此受影响.同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或 ...
- [机器学习理论] 降维算法PCA、SVD(部分内容,有待更新)
几个概念 正交矩阵 在矩阵论中,正交矩阵(orthogonal matrix)是一个方块矩阵,其元素为实数,而且行向量与列向量皆为正交的单位向量,使得该矩阵的转置矩阵为其逆矩阵: 其中,为单位矩阵. ...
- 机器学习实战基础(二十):sklearn中的降维算法PCA和SVD(一) 之 概述
概述 1 从什么叫“维度”说开来 我们不断提到一些语言,比如说:随机森林是通过随机抽取特征来建树,以避免高维计算:再比如说,sklearn中导入特征矩阵,必须是至少二维:上周我们讲解特征工程,还特地提 ...
- ML: 降维算法-PCA
PCA (Principal Component Analysis) 主成份分析 也称为卡尔胡宁-勒夫变换(Karhunen-Loeve Transform),是一种用于探索高维数据结 ...
- 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD
PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...
- 非监督的降维算法--PCA
PCA是一种非监督学习算法,它能够在保留大多数有用信息的情况下,有效降低数据纬度. 它主要应用在以下三个方面: 1. 提升算法速度 2. 压缩数据,减小内存.硬盘空间的消耗 3. 图示化数据,将高纬数 ...
- 降维算法----PCA原理推导
1.从几何的角度去理解PCA降维 以平面坐标系为例,点的坐标是怎么来的? 图1 ...
- 机器学习实战基础(二十七):sklearn中的降维算法PCA和SVD(八)PCA对手写数字数据集的降维
PCA对手写数字数据集的降维 1. 导入需要的模块和库 from sklearn.decomposition import PCA from sklearn.ensemble import Rando ...
随机推荐
- Gym - 101810A ACM International Collegiate Programming Contest (2018)
bryce1010模板 http://codeforces.com/gym/101810/problem/A 大模拟,写崩了,代码借队友的...... 注意处理段与段的连接问题: #include&l ...
- python之序列化json模块与pickle模块(待补充)
一.json是所有语言都通用的一种序列化格式 只支持 : 列表,字典字符串,数字,且字典的key必须是字符串 ''' 1. dumps , loads 在内存中做数据转换: dumps : 数据类型 ...
- Excel 通过pl/sql导入到数据库 文本导入器 odbc导入器
Excel 通过pl/sql导入到数据库 第一种方法:文本导入器 1.准备Excel导入数据 jc.xls 2.把 jc.xls 文件 改为 jc.csv文件 3.在数据库里建一张jc表(FLH ...
- 102 Binary Tree Level Order Traversal 二叉树的层次遍历
给定一个二叉树,返回其按层次遍历的节点值. (即zhu'ceng'de,从左到右访问).例如:给定二叉树: [3,9,20,null,null,15,7], 3 / \ 9 20 ...
- VMware下OSSIM 5.2.0的下载、安装和初步使用(图文详解)
不多说,直接上干货! 入门阶段不建议选用最新的版本. 采用OSSIM 4.11 到 OSSIM5.0.3 之间任何版本做实验,sensor的状态都会是“V”. 建议,入门,采用OSSIM5.0.0 ...
- jQuery取得/设置select的值
本来以为jQuery("#select1").val();是取得选中的值, 那么jQuery("#select1").text();就是取得的文本. 这是不正确 ...
- python flask学习(1)与Git基础操作
今天从简单的flask开始完成Flask web开发的学习.今天学习了Git和GitHub项目的提交. Git尝试提交过程中出现了"Could not read from remote re ...
- VUE注意事项(建项目)
1>删除空格影响的:删除掉框中的代码 2>不需要新建,直接打开APP.vue,在此文件上进行修改,(注意:index.html最好不要进行修改) 3>修改APP.vue为自己需要的页 ...
- gulp的入门
http://markpop.github.io/2014/09/17/Gulp%E5%85%A5%E9%97%A8%E6%95%99%E7%A8%8B/ http://www.ydcss.com/a ...
- Java中,数值比较大小,以及数值判断相等
Java中,数值比较大小,以及数值判断相等