求一个括号的最大匹配数,这个题可以和UVa 1626比较着看。

注意题目背景一样,但是所求不一样。

回到这道题上来,设d(i, j)表示子序列Si ~ Sj的字符串中最大匹配数,如果Si 与 Sj能配对,d(i, j) = d(i+1, j-1)

然后要枚举中间点k,d(i, j) = max{ d(i, k) + d(k+1, j) }

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int maxn = + ; int n;
char s[maxn];
int d[maxn][maxn]; bool inline match(char c1, char c2)
{
if(c1 == '[' && c2 == ']') return true;
if(c1 == '(' && c2 == ')') return true;
return false;
} int main()
{
while(scanf("%s", s) == && s[] != 'e')
{
n = strlen(s);
for(int i = ; i + < n; i++)
{
if(match(s[i], s[i+])) d[i][i+] = ;
else d[i][i+] = ;
} for(int l = ; l <= n; l++)
{
for(int i = ; i + l - < n; i++)
{
int j = i + l - ;
d[i][j] = ;
if(match(s[i], s[j])) d[i][j] = d[i+][j-] + ;
for(int k = i; k < j; k++)
d[i][j] = max(d[i][j], d[i][k] + d[k+][j]);
}
} printf("%d\n", d[][n-]);
} return ;
}

代码君

POJ 2955 区间DP Brackets的更多相关文章

  1. poj 2955 区间dp入门题

    第一道自己做出来的区间dp题,兴奋ing,虽然说这题并不难. 从后向前考虑: 状态转移方程:dp[i][j]=dp[i+1][j](i<=j<len); dp[i][j]=Max(dp[i ...

  2. POJ 2955 (区间DP)

    题目链接: http://poj.org/problem?id=2955 题目大意:括号匹配.对称的括号匹配数量+2.问最大匹配数. 解题思路: 看起来像个区间问题. DP边界:无.区间间隔为0时,默 ...

  3. POJ 2955 区间DP必看的括号匹配问题,经典例题

    Brackets Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14226 Accepted: 7476 Description ...

  4. poj 3280(区间DP)

    Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7869   Accepted: 38 ...

  5. POJ 1651 (区间DP)

    题目链接: http://poj.org/problem?id=1651 题目大意:加分取牌.如果一张牌左右有牌则可以取出,分数为左牌*中牌*右牌.这样最后肯定还剩2张牌.求一个取牌顺序,使得加分最少 ...

  6. poj 1141 区间dp+递归打印路径

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 30383   Accepted: 871 ...

  7. POJ 1141 区间DP

    给一组小括号与中括号的序列,加入最少的字符,使该序列变为合法序列,输出该合法序列. dp[a][b]记录a-b区间内的最小值, mark[a][b]记录该区间的最小值怎样得到. #include &q ...

  8. poj 1390 区间dp

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5035   Accepted: 2065 Descriptio ...

  9. POJ 1651 区间DP Multiplication Puzzle

    此题可以转化为最优矩阵链乘的形式,d(i, j)表示区间[i, j]所能得到的最小权值. 枚举最后一个拿走的数a[k],状态转移方程为d(i, j) = min{ d(i, k) + d(k, j) ...

随机推荐

  1. python_18(Django基础)

    第1章 web框架的本质 1.1 socket 1.2 空格后面是主体内容 1.3 HTTP协议 1.3.1 响应流程 1.4 HTTP请求方法 1.5 HTTP工作原理 1.6 URL 1.7 HT ...

  2. eclipse修改xml配置文件tomcat不能同步问题

    之前springmvc-config.cml中的Controller写成了Constroller,导致java.lang.ClassNotFoundException异常,而我更改后,更新的信息并没有 ...

  3. java定时读取文件

    在项目中经常会用到定时器,在笔试或者面试中也会经常问到定时器和IO流. public class TimerDemo { public static void main(String[] args) ...

  4. this/super/static/final/匿名对象/继承/抽象类/访问权限修饰符

    1.this关键字的作用     1)调用本类中的属性;     2)调用本类中的构造方法;且只能放首行,且必须留一个构造方法作为出口,即不能递归调用     3)表示当前对象; 2.匿名对象     ...

  5. Android Studio报错Unable to resolve dependency for ':app@release/compileClasspath':无法引用任何外部依赖的解决办法

    Android Studio 在引用外部依赖时,发现一直无法引用外部依赖.刚开始以为是墙的问题,尝试修改Gradle配置,未解决问题. 最终发现原来是在Android Sudio安装优化配置时,将Gr ...

  6. DVWA之跨站请求伪造(CSRF)

    CSRF全称是Cross site request forgery ,翻译过来就是跨站请求伪造. CSRF是指利用受害者尚未失效的身份认证信息(cookie,会话信息),诱骗其点击恶意链接或者访问包含 ...

  7. Android(java)学习笔记146:网页源码查看器(Handler消息机制)

    1.项目框架图: 2.首先是布局文件activity_main.xml: <LinearLayout xmlns:android="http://schemas.android.com ...

  8. redis分布式共享锁模拟抢单的实现

    本篇内容主要讲解的是redis分布式锁,并结合模拟抢单的场景来使用,内容节点如下: jedis的nx生成锁 如何删除锁 模拟抢单动作 1.jedis的nx生成锁 对于分布式锁的生成通常需要注意如下几个 ...

  9. C#中加锁问题

    今天在工作中遇到了一个问题 当我使用多线程访问同一个方法资源时,为了不对结果进行冲突于是加了个死锁,还遇到了一些坑,特此来进行一些记录 static object obj=new object(); ...

  10. abp viewmodel的写法

    我的写法 public class QuotaCreateOrEditViewModel { public QuotaDto LoanQuota { get; set; } public bool I ...