题目:

Problem Description

Consider words of length 3n over alphabet {A, B, C} . Denote the number of occurences of A in a word a as A(a) , analogously let the number of occurences of B be denoted as B(a), and the number of occurenced of C as C(a) .

Let us call the word w regular if the following conditions are satisfied:

A(w)=B(w)=C(w) ; 
if c is a prefix of w , then A(c)>= B(c) >= C(c) . 
For example, if n = 2 there are 5 regular words: AABBCC , AABCBC , ABABCC , ABACBC and ABCABC .

Regular words in some sense generalize regular brackets sequences (if we consider two-letter alphabet and put similar conditions on regular words, they represent regular brackets sequences).

Given n , find the number of regular words.

Input

There are mutiple cases in the input file.

Each case contains n (0 <= n <= 60 ).

There is an empty line after each case.

Output

Output the number of regular words of length 3n .

There should be am empty line after each case.

Sample Input

2

3

Sample Output

5

42

Source

Recommend

xhd

题解:

dp方程很好想:用f[a][b][c]表示A有a个B有b个C有c个的单词的总数量,则f[a][0][0]=1,f[a][b][0]=f[a-1][b][0]+f[a][b-1][0],f[a][b][c]=f[a-1][b][c]+f[a][b-1][c]+f[a][b][c-1],只是要注意f可能过大··所以要用高精度顺便压下位····

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<cctype>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int N=;
const int Bit=;
int f[N][N][N][],n;
inline void add(int f1[],int f2[])
{
int l1,l2;
for(l1=;!f1[l1];l1--);for(l2=;!f2[l2];l2--);
if(l1<l2) l1=l2;
for(int i=;i<=l1;i++) f1[i]+=f2[i];
for(int i=;i<=l1;i++) f1[i+]+=f1[i]/Bit,f1[i]%=Bit;
}
inline void W(int f1[])
{
int l1;
for(l1=;!f1[l1];l1--);
cout<<f1[l1];
for(int i=l1-;i>=;i--)
{
if(f1[i]>=&&f1[i]<) putchar('');
else if(f1[i]>=&&f1[i]<) putchar(''),putchar('');
else if(f1[i]>=&&f1[i]<) putchar(''),putchar(''),putchar('');
cout<<f1[i];
}
cout<<endl;cout<<endl;
}
inline void getans()
{
for(int i=;i<=;i++)
for(int j=;j<=i;j++)
for(int k=;k<=j;k++)
{
if(j==) f[i][j][k][]=;
else if(k==)
{
add(f[i][j][],f[i][j-][]);add(f[i][j][],f[i-][j][]);
}
else
{
add(f[i][j][k],f[i-][j][k]);add(f[i][j][k],f[i][j-][k]);add(f[i][j][k],f[i][j][k-]);
}
}
}
int main()
{
//freopen("a.in","r",stdin);
getans();
while(~scanf("%d",&n))
W(f[n][n][n]);
return ;
}

刷题总结——regular words(hdu1502 dp+高精度加法+压位)的更多相关文章

  1. $2019$ 暑期刷题记录1:(算法竞赛DP练习)

    $ 2019 $ 暑期刷题记录: $ POJ~1952~~BUY~LOW, BUY~LOWER: $ (复杂度优化) 题目大意:统计可重序列中最长上升子序列的方案数. 题目很直接的说明了所求为 $ L ...

  2. POJ 2711 Regular Words(DP + 高精度)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1711 题目大意:给定一个正整数n,产生一个3*n位长的串,要求这个串 ...

  3. 刷题10. Regular Expression Matching

    一.题目说明 这个题目是10. Regular Expression Matching,乍一看不是很难. 但我实现提交后,总是报错.不得已查看了答案. 二.我的做法 我的实现,最大的问题在于对.*的处 ...

  4. DP刷题记录(持续更新)

    DP刷题记录 (本文例题目前大多数都选自算法竞赛进阶指南) TYVJ1071 求两个序列的最长公共上升子序列 设\(f_{i,j}\)表示a中的\(1-i\)与b中色\(1-j\)匹配时所能构成的以\ ...

  5. DP刷题记录

    目录 dp刷题记录 codeforces 706C codeforces 940E BZOJ3997 POJ2279 GYM102082B GYM102082D codeforces132C L3-0 ...

  6. 刷题向》DP》关于基础DP(easy)

    openjudge  8464 这道题其实很简单,算是DP的基础题,比较适合开拓DP思维. 题目比较有欺骗性,其实稍微想想就可以解决,因为题意说第一次卖出后才能买入,所以我们可以考虑枚举断点,所以题目 ...

  7. Leetcode OJ 刷题

    Valid Palindrome吐槽一下Leetcode上各种不定义标准的输入输出(只是面试时起码能够问一下输入输出格式...),此篇文章不是详细的题解,是自己刷LeetCode的一个笔记吧,尽管没有 ...

  8. 【刷题记录】BZOJ-USACO

    接下来要滚去bzoj刷usaco的题目辣=v=在博客记录一下刷题情况,以及存一存代码咯.加油! 1.[bzoj1597][Usaco2008 Mar]土地购买 #include<cstdio&g ...

  9. POJ 水题(刷题)进阶

    转载请注明出处:優YoU http://blog.csdn.net/lyy289065406/article/details/6642573 部分解题报告添加新内容,除了原有的"大致题意&q ...

随机推荐

  1. 2018.3.3 多线程中继承Thread 和实现Runnable接口 的比较(通过售票案例来分析)

    多线程中继承Thread 和实现Runnable接口 的比较(通过售票案例来分析) 通过Thread来实现 Test.java package com.lanqiao.demo4; public cl ...

  2. FTP服务器建立windows与Linux的文件共享与读写操作

    centos7搭建vsftpd  2018-11-15 我们有时想要windows与Linux互传文件,就要用到vsftpd了.它仅仅在windows上面操作,就可以实现与Linux的通信,详情如下: ...

  3. MySQL 查询优化之 Block Nested-Loop 与 Batched Key Access Joins

    MySQL 查询优化之 Block Nested-Loop 与 Batched Key Access Joins 在MySQL中,可以使用批量密钥访问(BKA)连接算法,该算法使用对连接表的索引访问和 ...

  4. laravel中使用PHPQuery实现网页采集

    由于没有PHPQuery的composer包安装所以需要我们手动在我们的laravel项目中安装加载PHPQuery,这里需要设置laravel的autoload->class map. 1.首 ...

  5. python将excel数据写入数据库,或从库中读取出来

    首先介绍一下SQL数据库的一些基本操作: 1创建 2删除 3写入 4更新(修改) 5条件选择 有了以上基本操作,就可以建立并存储一个简单的数据库了. 放出python调用的代码: 此处是调用dos 操 ...

  6. linux用户和用户组管理详解

    Linux 用户和用户组管理 Linux系统是一个多用户多任务的分时操作系统,任何一个要使用系统资源的用户,都必须首先向系统管理员申请一个账号,然后以这个账号的身份进入系统. 用户的账号一方面可以帮助 ...

  7. Hadoop4.2HDFS测试报告之四

    第二组:文件存储读过程记录 测试系统组成 存储类型 测试程序或命令 测试文件大小(Mb) 文件个数(个) 客户端并发数(个) 读速率 (M/s) NameNode:1 DataNode:1 本地存储 ...

  8. Python虚拟机之异常控制流(五)

    Python中的异常控制语义结构 在Python虚拟机之异常控制流(四)这一章中,我们考察了Python的异常在虚拟机中的级别上是什么东西,抛出异常这个动作在虚拟机的级别上对应的行为,最后,我们还剖析 ...

  9. 下拉列表 Spinner

    在Web开发中,HTML提供了下拉列表的实现,就是使用<select>元素实现一个下拉列表,在其中每个下拉列表项使用<option>表示即可.这是在Web开发中一个必不可少的交 ...

  10. 24、AES RSA加密处理记录

    一.加密过程解释 前提:发送方为A,接受方为B牢记:RSA为非对称加密,AES为对称加密.对称加密,属于传统的加密技术,加密和解密的秘钥都是相同的,AES的秘钥长度有128.192.256三种.非对称 ...