题目

zcwwzdjn在追杀十分sb的zhx,而zhx逃入了一个遥远的国度。当zcwwzdjn准备进入遥远的国度继续追杀时,守护神RapiD阻拦了zcwwzdjn的去路,他需要zcwwzdjn完成任务后才能进入遥远的国度继续追杀。

问题是这样的:遥远的国度有n个城市,这些城市之间由一些路连接且这些城市构成了一颗树。这个国度有一个首都,我们可以把这个首都看做整棵树的根,但遥远的国度比较奇怪,首都是随时有可能变为另外一个城市的。遥远的国度的每个城市有一个防御值,有些时候RapiD会使得某两个城市之间的路径上的所有城市的防御值都变为某个值。RapiD想知道在某个时候,如果把首都看做整棵树的根的话,那么以某个城市为根的子树的所有城市的防御值最小是多少。由于RapiD无法解决这个问题,所以他拦住了zcwwzdjn希望他能帮忙。但zcwwzdjn还要追杀sb的zhx,所以这个重大的问题就被转交到了你的手上。

输入格式

第1行两个整数n m,代表城市个数和操作数。

第2行至第n行,每行两个整数 u v,代表城市u和城市v之间有一条路。

第n+1行,有n个整数,代表所有点的初始防御值。

第n+2行一个整数 id,代表初始的首都为id。

第n+3行至第n+m+2行,首先有一个整数opt,如果opt=1,接下来有一个整数id,代表把首都修改为id;如果opt=2,接下来有三个整数p1 p2 v,代表将p1 p2路径上的所有城市的防御值修改为v;如果opt=3,接下来有一个整数 id,代表询问以城市id为根的子树中的最小防御值。

输出格式

对于每个opt=3的操作,输出一行代表对应子树的最小点权值。

输入样例

3 7

1 2

1 3

1 2 3

1

3 1

2 1 1 6

3 1

2 2 2 5

3 1

2 3 3 4

3 1

输出样例

1

2

3

4

提示

对于20%的数据,n<=1000 m<=1000。

对于另外10%的数据,n<=100000,m<=100000,保证修改为单点修改。

对于另外10%的数据,n<=100000,m<=100000,保证树为一条链。

对于另外10%的数据,n<=100000,m<=100000,没有修改首都的操作。

对于100%的数据,n<=100000,m<=100000,0<所有权值<=2^31。

题解

树剖,较为休闲

主要是换根问题,只影响询问结果

如果根与询问节点u的lca不为u,说明根在原树u的子树外,这样子换根后u的子树不变

如果lca为u,那么换根后只有根所在原树u的子树不在换根后u的子树内

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define ls (u << 1)
#define rs (u << 1 | 1)
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
int h[maxn],ne = 2;
struct EDGE{int to,nxt;}ed[2 * maxn];
inline void build(int u,int v){
ed[ne] = (EDGE){v,h[u]}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v]}; h[v] = ne++;
}
int n,m,val[maxn],capi;
int siz[maxn],dep[maxn],fa[maxn][18],top[maxn],son[maxn],id[maxn],Hash[maxn],cnt;
void dfs1(int u){
siz[u] = 1;
REP(i,17) fa[u][i] = fa[fa[u][i - 1]][i - 1];
Redge(u) if ((to = ed[k].to) != fa[u][0]){
dep[to] = dep[u] + 1; fa[to][0] = u;
dfs1(to);
siz[u] += siz[to];
if (!son[u] || siz[to] > siz[son[u]]) son[u] = to;
}
}
void dfs2(int u,int flag){
id[u] = ++cnt; Hash[cnt] = u;
top[u] = flag ? top[fa[u][0]] : u;
if (son[u]) dfs2(son[u],true);
Redge(u) if ((to = ed[k].to) != fa[u][0] && to != son[u])
dfs2(to,false);
}
int mn[4 * maxn],tag[4 * maxn];
void pd(int u){
if (tag[u]) mn[ls] = mn[rs] = tag[ls] = tag[rs] = tag[u],tag[u] = 0;
}
void build(int u,int l,int r){
if (l == r){
mn[u] = val[Hash[l]];
return;
}
int mid = l + r >> 1;
build(ls,l,mid);
build(rs,mid + 1,r);
mn[u] = min(mn[ls],mn[rs]);
}
void modify(int u,int l,int r,int L,int R,int v){
if (l >= L && r <= R){mn[u] = tag[u] = v; return;}
pd(u);
int mid = l + r >> 1;
if (mid >= L) modify(ls,l,mid,L,R,v);
if (mid < R) modify(rs,mid + 1,r,L,R,v);
mn[u] = min(mn[ls],mn[rs]);
}
int query(int u,int l,int r,int L,int R){
if (l >= L && r <= R) return mn[u];
pd(u);
int mid = l + r >> 1;
if (mid >= R) return query(ls,l,mid,L,R);
else if (mid < L) return query(rs,mid + 1,r,L,R);
else return min(query(ls,l,mid,L,R),query(rs,mid + 1,r,L,R));
}
int Lca(int u,int v){
if (dep[u] < dep[v]) swap(u,v);
if (dep[u] != dep[v]){
for (int i = 0,d = dep[u] - dep[v] - 1; (1 << i) <= d; i++)
if (d & (1 << i)) u = fa[u][i];
if (fa[u][0] == v) return u;
u = fa[u][0];
}
for (int i = 17; i >= 0; i--)
if (fa[u][i] != fa[v][i]) u = fa[u][i],v = fa[v][i];
return u;
}
void solve1(int u,int v,int x){
while (top[u] != top[v]){
if (dep[top[u]] < dep[top[v]]) swap(u,v);
modify(1,1,n,id[top[u]],id[u],x);
u = fa[top[u]][0];
}
if (dep[u] > dep[v]) swap(u,v);
modify(1,1,n,id[u],id[v],x);
}
void solve2(int u){
if (u == capi) {printf("%d\n",mn[1]); return;}
int lca = Lca(u,capi);
if (fa[lca][0] != u) printf("%d\n",query(1,1,n,id[u],id[u] + siz[u] - 1));
else {
int L = id[lca] - 1,R = id[lca] + siz[lca];
printf("%d\n",min(query(1,1,n,1,L),R <= n ? query(1,1,n,R,n) : INF));
}
}
int main(){
n = read(); m = read();
for (int i = 1; i < n; i++) build(read(),read());
for (int i = 1; i <= n; i++) val[i] = read();
dfs1(1); dfs2(1,0); build(1,1,n);
capi = read();
int opt,u,v;
while (m--){
opt = read();
if (opt == 1) capi = read();
else if (opt == 2){
u = read(); v = read();
solve1(u,v,read());
}else solve2(read());
}
return 0;
}

BZOJ3083 遥远的国度 【树剖】的更多相关文章

  1. P3979 遥远的国度 树剖

    P3979 遥远的国度 树剖 题面 需要想一下的树剖题,对于询问三需要处理换跟后的情况.我们以1为树根跑一遍剖分,对于换跟进行分类讨论,算出实际答案.讨论有三种情况: (以1为树根的树上) 跟在询问节 ...

  2. BZOJ3083: 遥远的国度(树链剖分)

    题意 $n$个节点的树,每个点有权值,支持三种操作 1. 换根 2.把$x$到$y$路径上节点权值变为$z$ 3.询问路径最小值 Sol 啥?你说这是TopTree的裸题?那你写去啊 很显然,如果没有 ...

  3. [日常摸鱼]bzoj3083遥远的国度-树链剖分

    一无聊就找树剖写 题意:一颗带点权的树,三种操作:1.换根 2.链赋值 3.查询子树最小值 如果没有换根的话直接就是裸的树剖了,对于换根的操作我们可以分类讨论. 1.如果查询的$x$就是根,那答案就是 ...

  4. BZOJ 3083: 遥远的国度 (树剖+线段树)

    传送门 解题思路 前两个操作都比较基础.对于第三个操作分类讨论一下,首先如果当前根不是要操作点的子树,那么就无影响,直接查询操作点的子树即可.第二种是当前根是操作点的子树,那就找到当前根到操作点这条链 ...

  5. 【BZOJ3083/3306】遥远的国度/树 树链剖分+线段树

    [BZOJ3083]遥远的国度 Description 描述zcwwzdjn在追杀十分sb的zhx,而zhx逃入了一个遥远的国度.当zcwwzdjn准备进入遥远的国度继续追杀时,守护神RapiD阻拦了 ...

  6. bzoj3083 遥远的国度 && bzoj3626 LCA (树链剖分)

    今早刷了两道树剖的题目,用时两小时十五分钟= = 树剖的题目代码量普遍120+ 其实打熟练之后是很容易调的,不熟练的话代码量大可能会因为某些小细节调很久 3083:裸树剖+"换根" ...

  7. BZOJ3083 遥远的国度(树链剖分+线段树)

    考虑暴力树剖.那么修改路径和查询子树最小值非常简单. 对于换根当然不能真的给他转一下,我们只记录当前根是哪个.对于查询,如果查询点不在当前根到原根的路径上,显然换根是对答案没有影响的:如果是当前根,答 ...

  8. BZOJ3083 遥远的国度 【树链剖分】

    BZOJ3083 遥远的国度 Description zcwwzdjn在追杀十分sb的zhx,而zhx逃入了一个遥远的国度.当zcwwzdjn准备进入遥远的国度继续追杀时,守护神RapiD阻拦了zcw ...

  9. 【bzoj3083】遥远的国度 树链剖分+线段树

    题目描述 描述zcwwzdjn在追杀十分sb的zhx,而zhx逃入了一个遥远的国度.当zcwwzdjn准备进入遥远的国度继续追杀时,守护神RapiD阻拦了zcwwzdjn的去路,他需要zcwwzdjn ...

随机推荐

  1. PHP程序Laravel框架的优化技巧

    Laravel是一套简洁.优雅的php Web开发框架(PHP Web Framework).它可以让你从杂乱的代码中解脱出来,可以帮你构建一个完美的网络app,而且每行代码都简洁.富于表达力.而性能 ...

  2. [转]C++中sizeof(struct)怎么计算?

    版权属于原作者,我只是排版. 1. sizeof应用在结构上的情况 请看下面的结构: struct MyStruct{ double dda1; char dda; int type;}; 对结构My ...

  3. 用Windows Native API枚举所有句柄及查找文件句柄对应文件名的方法

    枚举所有句柄的方法 由于windows并没有给出枚举所有句柄所用到的API,和进程所拥有的句柄相关的只有GetProcessHandleCount这个函数,然而这个函数只能获取到和进程相关的句柄数,不 ...

  4. 【离线 撤销并查集 线段树分治】bzoj1018: [SHOI2008]堵塞的交通traffic

    本题可化成更一般的问题:离线动态图询问连通性 当然可以利用它的特殊性质,采用在线线段树维护一些标记的方法 Description 有一天,由于某种穿越现象作用,你来到了传说中的小人国.小人国的布局非常 ...

  5. 【NOIP提高A组模拟2018.8.14】 区间

    区间加:差分数组修改 O(n)扫描,负数位置单调不减 #include<iostream> #include<cstring> #include<cstdio> # ...

  6. destoon 后台入口文件weigouadmin.php解析

    destoon有几个文件不能修改,一修改后台就无法登陆,weigouadmin.php就是其中之一,据官网客服说这个文件是可以修改的,不知为什么即使不修改打开一下保存后后台就不能登陆了.因刚接触dt, ...

  7. SEO 优化

    1.什么是SEO优化: 简单的来说就是了解搜索引擎的排名规则,投机所好,让我们的网站在搜索引擎上得到靠前的排名,获取更多流量的一种方式. 2.SEO优化-衡量标准 关键词的排名--核心关键词的效果 收 ...

  8. 【linux】【rpm】确定程序是否 rpm 安装

    执行 rpm -qf 文件名如果结果显示出安装包那就说明是rpm (或者yum)安装 详情参看 rpm -v  (或者 man rpm) ​

  9. 20.Yii2.0框架多表关联一对多查询之hasMany

    目录 新手模式 hasMany关联模式查询 新建mode层Article.php 新建mode层Category.php 新建控制器HomeController.php 新手模式 用上次的查询结果,作 ...

  10. 无需上传附件到服务器,Servlet读取Excel(二)

    package com.str; import java.io.File;import java.io.FileInputStream;import java.io.IOException; impo ...