题目描述

Seter建造了一个很大的星球,他准备建造N个国家和无数双向道路。N个国家很快建造好了,用1..N编号,但是他发现道路实在太多了,他要一条条建简直是不可能的!于是他以如下方式建造道路:(a,b),(c,d)表示,对于任意两个国家x,y,如果a<=x<=b,c<=y<=d,那么在xy之间建造一条道路。Seter保证不会有一个国家与自己之间有道路。
Seter好不容易建好了所有道路,他现在在位于P号的首都。Seter想知道P号国家到任意一个国家最少需要经过几条道路。当然,Seter保证P号国家能到任意一个国家。
注意:可能有重边

输入

第一行三个数N,M,P。N<=500000,M<=100000。
后M行,每行4个数A,B,C,D。1<=A<=B<=N,1<=C<=D<=N。

输出

N行,第i行表示P号国家到第i个国家最少需要经过几条路。显然第P行应该是0。

样例输入

5 3 4
1 2 4 5
5 5 4 4
1 1 3 3

样例输出

1
1
2
0
1


题解

线段树优化建图+堆优化Dijkstra

看别人blog看到了这道题,于是决定YY一发。

一个朴素(已经不是最朴素的了)的加边方法:a~b的所有点->p1,长度为0;p1->p2,长度为1;p2->c~d的所有点,长度为0,其中加的都是有向边,p1和p2是新建的两个辅助点,然后再反过来进行这个过程。

然而这样加边的话边数依旧巨大。

由于给出的加边都是区间形式,所以我们可以用维护区间的数据结构——线段树,去优化这个建图过程。

具体方法(这里只讲加有向边a~b->c~d的方法):

建立两颗线段树A、B,其中A线段树每个非叶子节点的儿子向该节点连边,长度为0,B线段树每个非叶子节点向该节点的儿子连边,长度为0;B线段树的叶子结点向A线段树对应的叶子结点连边,长度为0。

这里面A线段树的叶子结点代表原图中的节点,其余节点都是用来优化建图。

对于加边操作,找到A线段树上a~b对应的区间节点,这些节点向p1连边,长度为0;p1->p2,长度为1;找到B线段树上c~d对应的区间节点,p2向这些节点连边,长度为0.

最后跑堆优化Dijkstra出解。

应该不是很难理解,具体可以见代码。

#include <cstdio>
#include <cstring>
#include <queue>
#include <utility>
#define N 500010
#define M 3500010
using namespace std;
priority_queue<pair<int , int> > q;
int head[M] , to[M << 3] , len[M << 3] , next[M << 3] , cnt , ls[N << 3] , rs[N << 3] , ra , rb , tot , v[N] , n , dis[M] , vis[M];
void add(int x , int y , int z)
{
to[++cnt] = y , len[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
}
void build(int l , int r , int &x , int flag)
{
x = ++tot;
if(l == r)
{
if(flag) v[l] = x;
return;
}
int mid = (l + r) >> 1;
build(l , mid , ls[x] , flag) , build(mid + 1 , r , rs[x] , flag);
if(flag) add(ls[x] , x , 0) , add(rs[x] , x , 0);
else add(x , ls[x] , 0) , add(x , rs[x] , 0);
}
void deal(int l , int r , int x , int y)
{
if(l == r)
{
add(y , x , 0);
return;
}
int mid = (l + r) >> 1;
deal(l , mid , ls[x] , ls[y]) , deal(mid + 1 , r , rs[x] , rs[y]);
}
void update(int b , int e , int p , int l , int r , int x , int flag)
{
if(b <= l && r <= e)
{
if(flag) add(x , p , 0);
else add(p , x , 0);
return;
}
int mid = (l + r) >> 1;
if(b <= mid) update(b , e , p , l , mid , ls[x] , flag);
if(e > mid) update(b , e , p , mid + 1 , r , rs[x] , flag);
}
void link(int a , int b , int c , int d)
{
update(a , b , ++tot , 1 , n , ra , 1) , add(tot , tot + 1 , 1) , update(c , d , ++tot , 1 , n , rb , 0);
}
int main()
{
int m , p , a , b , c , d , i , x;
scanf("%d%d%d" , &n , &m , &p);
build(1 , n , ra , 1) , build(1 , n , rb , 0) , deal(1 , n , ra , rb);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d%d%d" , &a , &b , &c , &d) , link(a , b , c , d) , link(c , d , a , b);
memset(dis , 0x3f , sizeof(dis)) , dis[v[p]] = 0 , q.push(make_pair(0 , v[p]));
while(!q.empty())
{
x = q.top().second , q.pop();
if(vis[x]) continue;
vis[x] = 1;
for(i = head[x] ; i ; i = next[i])
if(dis[to[i]] > dis[x] + len[i])
dis[to[i]] = dis[x] + len[i] , q.push(make_pair(-dis[to[i]] , to[i]));
}
for(i = 1 ; i <= n ; i ++ ) printf("%d\n" , dis[v[i]]);
return 0;
}

【bzoj3073】[Pa2011]Journeys 线段树优化建图+堆优化Dijkstra的更多相关文章

  1. bzoj3073: [Pa2011]Journeys 线段树优化建图

    bzoj3073: [Pa2011]Journeys 链接 BZOJ 思路 区间和区间连边.如何线段树优化建图. 和单点连区间类似的,我们新建一个点,区间->新点->区间. 又转化成了单点 ...

  2. BZOJ3073: [Pa2011]Journeys(线段树优化建图 Dijkstra)

    题意 \(n\)个点的无向图,构造\(m\)次边,求\(p\)到任意点的最短路. 每次给出\(a, b, c, d\) 对于任意\((x_{a \leqslant x \leqslant b}, y_ ...

  3. 洛谷 P5471 - [NOI2019] 弹跳(二维线段树优化建图+堆优化存边)

    题面传送门 一道非常有意思的题(大概可以这么形容?) 首先看到这类一个点想一个区域内连边的题目可以很自然地想到线段树优化建图,只不过这道题是二维的,因此需要使用二维线段树优化建图,具体来说,我们外层开 ...

  4. 【BZOJ3073】[Pa2011]Journeys 线段树+堆优化Dijkstra

    [BZOJ3073][Pa2011]Journeys Description Seter建造了一个很大的星球,他准备建造N个国家和无数双向道路.N个国家很快建造好了,用1..N编号,但是他发现道路实在 ...

  5. bzoj 3073: [Pa2011]Journeys -- 线段树优化最短路

    3073: [Pa2011]Journeys Time Limit: 20 Sec  Memory Limit: 512 MB Description     Seter建造了一个很大的星球,他准备建 ...

  6. Codeforces.786B.Legacy(线段树优化建图 最短路Dijkstra)

    题目链接 \(Description\) 有\(n\)个点.你有\(Q\)种项目可以选择(边都是有向边,每次给定\(t,u,v/lr,w\)): t==1,建一条\(u\to v\)的边,花费\(w\ ...

  7. bzoj 3073 [Pa2011]Journeys ——线段树优化连边

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3073 建两棵线段树,一棵孩子向父亲连边,是走出去的:一棵父亲向孩子连边,是走进来的. 注意第 ...

  8. BZOJ5017 [SNOI2017]炸弹 - 线段树优化建图+Tarjan

    Solution 一个点向一个区间内的所有点连边, 可以用线段树优化建图来优化 : 前置技能传送门 然后就得到一个有向图, 一个联通块内的炸弹可以互相引爆, 所以进行缩点变成$DAG$ 然后拓扑排序. ...

  9. HDU 5669 线段树优化建图+分层图最短路

    用线段树维护建图,即把用线段树把每个区间都标号了,Tree1中子节点有到达父节点的单向边,Tree2中父节点有到达子节点的单向边. 每次将源插入Tree1,汇插入Tree2,中间用临时节点相连.那么T ...

随机推荐

  1. UVA 1616 Caravan Robbers 商队抢劫者(二分)

    x越大越难满足条件,二分,每次贪心的选区间判断是否合法.此题精度要求很高需要用long double,结果要输出分数,那么就枚举一下分母,然后求出分子,在判断一下和原来的数的误差. #include& ...

  2. 《毛毛虫组》【Alpha】Scrum meeting 2

    第二天 日期:2019/6/15 1.1 今日完成任务情况以及遇到的问题. 今日完成任务情况: (1)对数据库表进行完善及测试: (2)定义Regex类的IsMatch()方法: (3)进行这一模块代 ...

  3. java基础—基础语法2

    一.语句

  4. LINQ中AsEnumerable与AsQueryable的区别

    AsEnumerable将一个序列向上转换为一个IEnumerable, 强制将Enumerable类下面的查询操作符绑定到后续的子查询当中:AsQueryable将一个序列向下转换为一个IQuery ...

  5. WinForm中Timer倒计时

    添加一个Timer控件: 在初始化代码中 public Form1() { InitializeComponent(); button_Read.Enabled = false; button_Sta ...

  6. (转发)IOS动画中的枚举UIViewAnimationOptions

    若本帖转自(博客园·小八究):http://www.cnblogs.com/xiaobajiu/p/4084747.html 可怜目前天朝搜不到什么有价值的东西方便学习,在这里方便初学者. 首先这个枚 ...

  7. (转发)IOS高级开发~Runtime(四)

    用C代替OC: #import <objc/runtime.h> #import <objc/message.h> #import <stdio.h> extern ...

  8. 【Git版本控制】Git的merge合并分支命令

    1.实例 git checkout master git merge dev merge合并分支只对当前分支master产生影响,被合并的分支dev不受影响. 假设你有两个分支,“stable” 和 ...

  9. python入门:从安装python开始

    python简介: Python (英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种面向对象的解释型计算机程序设计语言,由荷兰人Guido van Rossum于1989年发明 ...

  10. tomcat报错:java.io.IOException: 您的主机中的软件中止了一个已建立的连接。

    tomcat报错: org.apache.catalina.connector.ClientAbortException: java.io.IOException: 您的主机中的软件中止了一个已建立的 ...