题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1201

题意:

  有一个边长为n的正三角形网格,去掉其中一些线段,问你在这幅图中有多少个三角形。

题解:

  枚举 + 前缀和。

  三角形总共有两种:正着放的、倒着放的。

  分别处理就好。

  总复杂度 < O(N^3)

  为了判断某一个三角形是否存在,需要迅速判断它的三边是否都是实线(不断开)。

  所以建立三个前缀和,分别代表左、右、底边在对应方向上的边长和。

  若某一边上的区间和[a,b] == b-a+1,则为实线。

  如图为前缀和方向:

  

  正着放的:

    N^2枚举三角形最顶上的小三角形,再套一个for枚举向下延伸的边长k。

  

  倒着放的:

    倒三角形底部有一个小倒三角形,枚举它左边相邻的小正三角。

  

AC Code:

 #include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_N 1005 using namespace std; int n;
int ans=;
int l[MAX_N][MAX_N];
int r[MAX_N][MAX_N];
int b[MAX_N][MAX_N];
int lef[MAX_N][MAX_N];
int rig[MAX_N][MAX_N];
int btm[MAX_N][MAX_N]; void read()
{
memset(l,,sizeof(l));
memset(r,,sizeof(r));
memset(b,,sizeof(b));
cin>>n;
for(int i=;i<=n;i++)
{
for(int j=;j<=i;j++)
{
cin>>l[i][j]>>r[i][j]>>b[i][j];
}
}
} void cal_sum()
{
memset(lef,,sizeof(lef));
memset(rig,,sizeof(rig));
memset(btm,,sizeof(btm));
for(int i=;i<=n;i++)
{
for(int j=;j<=i;j++)
{
lef[i][j]=lef[i-][j]+l[i][j];
rig[i][j]=rig[i-][j-]+r[i][j];
btm[i][j]=btm[i][j-]+b[i][j];
}
}
} void find_tri()
{
for(int i=;i<=n;i++)
{
for(int j=;j<=i;j++)
{
for(int k=;;k++)
{
if(lef[i+k-][j]-lef[i-][j]<k) break;
if(rig[i+k-][j+k-]-rig[i-][j-]<k) break;
if(btm[i+k-][j+k-]-btm[i+k-][j-]<k) continue;
ans++;
}
}
}
for(int i=;i<=n;i++)
{
for(int j=;j<i;j++)
{
for(int k=;i-k>= && j-k>=;k++)
{
if(lef[i][j+]-lef[i-k][j+]<k) break;
if(rig[i][j]-rig[i-k][j-k]<k) break;
if(btm[i-k][j]-btm[i-k][j-k]<k) continue;
ans++;
}
}
}
} void solve()
{
cal_sum();
find_tri();
} void print()
{
cout<<ans<<endl;
} int main()
{
read();
solve();
print();
}

BZOJ 1201 [HNOI2005]数三角形:枚举 + 前缀和的更多相关文章

  1. bzoj 1201[HNOI2005]数三角形 1202 [HNOI2005]狡猾的商人 暴力 权值并查集

    [HNOI2005]数三角形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 349  Solved: 234[Submit][Status][Disc ...

  2. 1201: [HNOI2005]数三角形 - BZOJ

    Description Input 大三角形的所有短边可以看成由(n+1)*n/2个单位三角形的边界组成.如下图的灰色三角形所示.其中第1排有1个灰色三角形,第2排有2个灰色三角形,……,第n排有n个 ...

  3. 【BZOJ1201】[HNOI2005]数三角形(暴力)

    [BZOJ1201][HNOI2005]数三角形(暴力) 题面 BZOJ 洛谷 题解 预处理每个点向四个方向可以拓展的最大长度,然后钦定一个点作为三角形的某个顶点,暴力枚举三角形长度,检查这样一个三角 ...

  4. BZOJ 3505: [Cqoi2014]数三角形 数学

    3505: [Cqoi2014]数三角形 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  5. Bzoj 3505: [Cqoi2014]数三角形 数论

    3505: [Cqoi2014]数三角形 Time Limits: 1000 ms  Memory Limits: 524288 KB  Detailed Limits   Description

  6. bzoj 3505: [Cqoi2014]数三角形 组合数学

    3505: [Cqoi2014]数三角形 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 478  Solved: 293[Submit][Status ...

  7. BZOJ 3505: [Cqoi2014]数三角形( 组合数 )

    先n++, m++ 显然答案就是C(3, n*m) - m*C(3, n) - n*C(3, m) - cnt. 表示在全部点中选出3个的方案减去不合法的, 同一行/列的不合法方案很好求, 对角线的不 ...

  8. BZOJ 3505: [Cqoi2014]数三角形 [组合计数]

    3505: [Cqoi2014]数三角形 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个. 注意三角形的三点不能共线. 1<=m,n<=1000 $n++ m++$ $ans ...

  9. BZOJ 3505 [Cqoi2014]数三角形

    3505: [Cqoi2014]数三角形 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形.注意三角形的三点不能共线. Input ...

随机推荐

  1. hdu5417(BC)

    题目链接:点这儿 Victor and Machine Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K ( ...

  2. C语言八进制和十六进制数

    一 赋值 int dex = 100;// 默认十进制 int oct = 0144;// 八进制,以0開始 int hex = 0x64;// 十六进制,以0x開始 二 输出 void show(i ...

  3. js:Razor视图下服务器代码给Javascript变量赋值

    namespace Razor.Controllers { public class JSController : Controller { public ActionResult Index() { ...

  4. DOTA游戏相关的文章

    DOTA里面到底有几号位?各代表什么? DOTA新手进阶之S.SHIFT及M键的使用 Dota开局 对线方法技巧总结 dota补刀的技巧 dota需要注意的小细节 dota前期如何对线 DotA 命令 ...

  5. (十)jQuery对表单、表格的操作

    一.表单应用 1.HTML中的表单大致由三部分组成 (1).表单标签:包含处理表单数据所用的服务端程序URL,以及数据提交到服务器的方法. (2).表单域:包含文本框.密码框.隐藏域.多行文本框.复选 ...

  6. (七)jQuery中的DOM操作

    一.jQuery的DOM操作 (1)查找节点: 查找元素节点: 1. 获取指定的标签节点 $(“上级标签 标签:eq(“标签索引”) ;  如:var li = $("ul li:eq(2) ...

  7. VueJS事件处理器v-on

    事件监听可以使用 v-on 指令. v-on:click表达式 HTML: <!DOCTYPE html> <html> <head> <meta chars ...

  8. 字符串各个字符ASCII值加5

    程序实现目标: 输入一个字符串,将其各个字符对应的ASCII值加5后,输出结果 程序要求:该字符串只包含小写字母,若其值加5后的字符值大于'z',将其转换成从a开始的字符. 分析:问题归结为三点: 1 ...

  9. 使用sphinx生成美观的文档

    先上效果图 详情 首先,须要知道什么是restructuredtext.能够理解为类似于markdown的一个东西. 然后 安装.pip install sphinx 进入存放文档的文件夹,在命令行, ...

  10. c# emit 实现类的代理

    using System; using System.Linq; using System.Reflection; using System.Reflection.Emit; namespace Em ...