题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1201

题意:

  有一个边长为n的正三角形网格,去掉其中一些线段,问你在这幅图中有多少个三角形。

题解:

  枚举 + 前缀和。

  三角形总共有两种:正着放的、倒着放的。

  分别处理就好。

  总复杂度 < O(N^3)

  为了判断某一个三角形是否存在,需要迅速判断它的三边是否都是实线(不断开)。

  所以建立三个前缀和,分别代表左、右、底边在对应方向上的边长和。

  若某一边上的区间和[a,b] == b-a+1,则为实线。

  如图为前缀和方向:

  

  正着放的:

    N^2枚举三角形最顶上的小三角形,再套一个for枚举向下延伸的边长k。

  

  倒着放的:

    倒三角形底部有一个小倒三角形,枚举它左边相邻的小正三角。

  

AC Code:

 #include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_N 1005 using namespace std; int n;
int ans=;
int l[MAX_N][MAX_N];
int r[MAX_N][MAX_N];
int b[MAX_N][MAX_N];
int lef[MAX_N][MAX_N];
int rig[MAX_N][MAX_N];
int btm[MAX_N][MAX_N]; void read()
{
memset(l,,sizeof(l));
memset(r,,sizeof(r));
memset(b,,sizeof(b));
cin>>n;
for(int i=;i<=n;i++)
{
for(int j=;j<=i;j++)
{
cin>>l[i][j]>>r[i][j]>>b[i][j];
}
}
} void cal_sum()
{
memset(lef,,sizeof(lef));
memset(rig,,sizeof(rig));
memset(btm,,sizeof(btm));
for(int i=;i<=n;i++)
{
for(int j=;j<=i;j++)
{
lef[i][j]=lef[i-][j]+l[i][j];
rig[i][j]=rig[i-][j-]+r[i][j];
btm[i][j]=btm[i][j-]+b[i][j];
}
}
} void find_tri()
{
for(int i=;i<=n;i++)
{
for(int j=;j<=i;j++)
{
for(int k=;;k++)
{
if(lef[i+k-][j]-lef[i-][j]<k) break;
if(rig[i+k-][j+k-]-rig[i-][j-]<k) break;
if(btm[i+k-][j+k-]-btm[i+k-][j-]<k) continue;
ans++;
}
}
}
for(int i=;i<=n;i++)
{
for(int j=;j<i;j++)
{
for(int k=;i-k>= && j-k>=;k++)
{
if(lef[i][j+]-lef[i-k][j+]<k) break;
if(rig[i][j]-rig[i-k][j-k]<k) break;
if(btm[i-k][j]-btm[i-k][j-k]<k) continue;
ans++;
}
}
}
} void solve()
{
cal_sum();
find_tri();
} void print()
{
cout<<ans<<endl;
} int main()
{
read();
solve();
print();
}

BZOJ 1201 [HNOI2005]数三角形:枚举 + 前缀和的更多相关文章

  1. bzoj 1201[HNOI2005]数三角形 1202 [HNOI2005]狡猾的商人 暴力 权值并查集

    [HNOI2005]数三角形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 349  Solved: 234[Submit][Status][Disc ...

  2. 1201: [HNOI2005]数三角形 - BZOJ

    Description Input 大三角形的所有短边可以看成由(n+1)*n/2个单位三角形的边界组成.如下图的灰色三角形所示.其中第1排有1个灰色三角形,第2排有2个灰色三角形,……,第n排有n个 ...

  3. 【BZOJ1201】[HNOI2005]数三角形(暴力)

    [BZOJ1201][HNOI2005]数三角形(暴力) 题面 BZOJ 洛谷 题解 预处理每个点向四个方向可以拓展的最大长度,然后钦定一个点作为三角形的某个顶点,暴力枚举三角形长度,检查这样一个三角 ...

  4. BZOJ 3505: [Cqoi2014]数三角形 数学

    3505: [Cqoi2014]数三角形 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  5. Bzoj 3505: [Cqoi2014]数三角形 数论

    3505: [Cqoi2014]数三角形 Time Limits: 1000 ms  Memory Limits: 524288 KB  Detailed Limits   Description

  6. bzoj 3505: [Cqoi2014]数三角形 组合数学

    3505: [Cqoi2014]数三角形 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 478  Solved: 293[Submit][Status ...

  7. BZOJ 3505: [Cqoi2014]数三角形( 组合数 )

    先n++, m++ 显然答案就是C(3, n*m) - m*C(3, n) - n*C(3, m) - cnt. 表示在全部点中选出3个的方案减去不合法的, 同一行/列的不合法方案很好求, 对角线的不 ...

  8. BZOJ 3505: [Cqoi2014]数三角形 [组合计数]

    3505: [Cqoi2014]数三角形 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个. 注意三角形的三点不能共线. 1<=m,n<=1000 $n++ m++$ $ans ...

  9. BZOJ 3505 [Cqoi2014]数三角形

    3505: [Cqoi2014]数三角形 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形.注意三角形的三点不能共线. Input ...

随机推荐

  1. require.js 使用

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. beforeRouteLeave 实现vue路由拦截浏览器的需求,进行一系列操作 草稿保存等等

    场景:为了防止用户失误点错关闭按钮等等,导致没有保存已输入的信息(关键信息).用法://在路由组件中: beforeRouteLeave (to, from, next) { if(用户已经输入信息) ...

  3. 将ActiveX控件标记为安全

    參考网页 http://msdn.microsoft.com/en-us/library/aa751977(v=vs.85).aspx http://support.microsoft.com/kb/ ...

  4. Hibernate4.3.6 Final+Spring3.0.5配置出错提示及解决方法

    1. Caused by: org.hibernate.cache.NoCacheRegionFactoryAvailableException: Second-level cache is used ...

  5. cocos2dx3.x使用cocostudio触摸事件不响应的奇葩问题

    刚刚使用3.1,发现了一些关于触摸的不同之处,对于习惯于2.x的人还是认为坑啊,简单总结一下: 使用cocostudio加进来的ui,当某个可触但不可见的时候,给他加入不论什么触摸监听事件都是依照不可 ...

  6. java中各种时间格式的转化

    http://www.chinaitpower.com/A/2005-01-14/104881.html 使用java.util.Calendar返回间隔天数         static int g ...

  7. java获取网页源码

    获取网页的源码: package com.atguigu.crud.controller; import java.io.BufferedReader; import java.io.Buffered ...

  8. 小白学习python之路(二):安装开发工具

    引言 上一章我们安装配置了python3.7,这一章我们安装python的开发工具,我用的pycharm2019 安装 工具连接:https://u20538204.ctfile.com/fs/205 ...

  9. Getting Started with the G1 Garbage Collector(译)

    原文链接:Getting Started with the G1 Garbage Collector 概述 目的 这篇教程包含了G1垃圾收集器使用和它如何与HotSpot JVM配合使用的基本知识.你 ...

  10. 【Python】用Python打开IE、谷歌等浏览器报错及解决办法

    以IE浏览器为例: 当Python Shell输入下面代码时: >>> # coding=utf-8 >>> from selenium import webdri ...