https://www.cnblogs.com/qingyunzong/p/8899715.html

练习1:map、filter

//通过并行化生成rdd

val rdd1 = sc.parallelize(List(5, 6, 4, 7, 3, 8, 2, 9, 1, 10))

//对rdd1里的每一个元素乘2然后排序

val rdd2 = rdd1.map(_ * 2).sortBy(x => x, true)

//过滤出大于等于十的元素

val rdd3 = rdd2.filter(_ >= 10)

//将元素以数组的方式在客户端显示

rdd3.collect

练习2:flatmap

val rdd1 = sc.parallelize(Array("a b c", "d e f", "h i j"))

//将rdd1里面的每一个元素先切分在压平

val rdd2 = rdd1.flatMap(_.split(' '))

rdd2.collect

练习3:交集、并集

val rdd1 = sc.parallelize(List(5, 6, 4, 3))

val rdd2 = sc.parallelize(List(1, 2, 3, 4))

//求并集

val rdd3 = rdd1.union(rdd2)

//求交集

val rdd4 = rdd1.intersection(rdd2)

//去重

rdd3.distinct.collect

rdd4.collect

练习4:join、groupbykey

val rdd1 = sc.parallelize(List(("tom", 1), ("jerry", 3), ("kitty", 2)))

val rdd2 = sc.parallelize(List(("jerry", 2), ("tom", 1), ("shuke", 2)))

//求jion

val rdd3 = rdd1.join(rdd2)

rdd3.collect

//求并集

val rdd4 = rdd1 union rdd2

//按key进行分组

rdd4.groupByKey

rdd4.collect

练习5:cogroup

val rdd1 = sc.parallelize(List(("tom", 1), ("tom", 2), ("jerry", 3), ("kitty", 2)))

val rdd2 = sc.parallelize(List(("jerry", 2), ("tom", 1), ("shuke", 2)))

//cogroup

val rdd3 = rdd1.cogroup(rdd2)

//注意cogroup与groupByKey的区别

rdd3.collect

练习6:reduce

val rdd1 = sc.parallelize(List(1, 2, 3, 4, 5))

//reduce聚合

val rdd2 = rdd1.reduce(_ + _)

rdd2.collect

练习7:reducebykey、sort

val rdd1 = sc.parallelize(List(("tom", 1), ("jerry", 3), ("kitty", 2),  ("shuke", 1)))

val rdd2 = sc.parallelize(List(("jerry", 2), ("tom", 3), ("shuke", 2), ("kitty", 5)))

val rdd3 = rdd1.union(rdd2)

//按key进行聚合

val rdd4 = rdd3.reduceByKey(_ + _)

rdd4.collect

//按value的降序排序

val rdd5 = rdd4.map(t => (t._2, t._1)).sortByKey(false).map(t => (t._2, t._1))

rdd5.collect

大数据学习——sparkRDD的更多相关文章

  1. 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机)

    引言 在大数据学习系列之一 ----- Hadoop环境搭建(单机) 成功的搭建了Hadoop的环境,在大数据学习系列之二 ----- HBase环境搭建(单机)成功搭建了HBase的环境以及相关使用 ...

  2. 大数据学习系列之五 ----- Hive整合HBase图文详解

    引言 在上一篇 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机) 和之前的大数据学习系列之二 ----- HBase环境搭建(单机) 中成功搭建了Hive和HBase的环 ...

  3. 大数据学习系列之六 ----- Hadoop+Spark环境搭建

    引言 在上一篇中 大数据学习系列之五 ----- Hive整合HBase图文详解 : http://www.panchengming.com/2017/12/18/pancm62/ 中使用Hive整合 ...

  4. 大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 图文详解

    引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单 ...

  5. 大数据学习系列之九---- Hive整合Spark和HBase以及相关测试

    前言 在之前的大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 中介绍了集群的环境搭建,但是在使用hive进行数据查询的时候会非常的慢,因为h ...

  6. 大数据学习之Linux进阶02

    大数据学习之Linux进阶 1-> 配置IP 1)修改配置文件 vi /sysconfig/network-scripts/ifcfg-eno16777736 2)注释掉dhcp #BOOTPR ...

  7. 大数据学习之Linux基础01

    大数据学习之Linux基础 01:Linux简介 linux是一种自由和开放源代码的类UNIX操作系统.该操作系统的内核由林纳斯·托瓦兹 在1991年10月5日首次发布.,在加上用户空间的应用程序之后 ...

  8. 大数据学习:storm流式计算

    Storm是一个分布式的.高容错的实时计算系统.Storm适用的场景: 1.Storm可以用来用来处理源源不断的消息,并将处理之后的结果保存到持久化介质中. 2.由于Storm的处理组件都是分布式的, ...

  9. 大数据学习系列之—HBASE

    hadoop生态系统 zookeeper负责协调 hbase必须依赖zookeeper flume 日志工具 sqoop 负责 hdfs dbms 数据转换 数据到关系型数据库转换 大数据学习群119 ...

随机推荐

  1. 上传图片转为blob URL和计算文件大小

    { getFileUrl: function getFileUrl(fileInputId) { var uri = { url: '', filename: '', filetype: '', da ...

  2. .NET CORE IIS 500.21

    最近遇到的.NET CORE 500.21的错误 官方解决方案地址:https://docs.microsoft.com/en-us/dynamics-nav/troubleshooting-http ...

  3. git从无到有建立一个仓库并上传文件

    第一步,创建仓库 登录自己的码云  第二步,本地操作 1.到你所要上传的文件夹中右键 选择git bash here 2.初始化项目 git init 3.连接远程仓库 刚才我们建立的时候的远程地址就 ...

  4. [拾零]C/C++_代码复用的实现_静态链接库_动态链接库_使用.def导出

    1 静态链接库 1.1 创建静态链接库: 1.在VC6中创建项目:Win32 Static Library 2.在项目中创建两个文件:xxx.h 和 xxx.cpp 3.编译 1.2 使用静态链接库 ...

  5. SQLSERVER是怎麽通过索引和统计信息来找到目标数据的(第三篇)

    SQLSERVER是怎麽通过索引和统计信息来找到目标数据的(第三篇) 最近真的没有什么精力写文章,天天加班,为了完成这个系列,硬着头皮上了 再看这篇文章之前请大家先看我之前写的第一篇和第二篇 第一篇: ...

  6. github的pull Request使用

    场景: teamA要一起做一个项目,选择用github管理自己的代码仓库,这时userA在github上新建了一个远程仓库,其他人需要通过pull request来实现提交.那么,问题来了,pull ...

  7. UVA 1606 Amphiphilic Carbon Molecules 两亲性分子 (极角排序或叉积,扫描法)

    任意线可以贪心移动到两点上.直接枚举O(n^3),会TLE. 所以采取扫描法,选基准点,然后根据极角或者两两做叉积比较进行排排序,然后扫一遍就好了.旋转的时候在O(1)时间推出下一种情况,总复杂度为O ...

  8. UVA 211 The Domino Effect 多米诺效应 (回溯)

    骨牌无非两种放法,横着或竖着放,每次检查最r,c最小的没访问过的点即可.如果不能放就回溯. 最外面加一层认为已经访问过的位置,方便判断. #include<bits/stdc++.h> ; ...

  9. 队列的add与offer的区别

    两个方法都表示往队列里添加元素 但是当出现异常时,add方法抛出异常 而offer则返回的是false,就是啥事也没有,也不抛异常,也没有添加成功!

  10. 将一个double类型的小数,按照四舍五入保留两位小数.

    package come.one01; public class One02 { public static void main(String[] args) { double numa = 3.14 ...