Description

Friend number are defined recursively as follows.
(1) numbers 1 and 2 are friend number;

(2) if a and b are friend numbers, so is ab+a+b;

(3) only the numbers defined in (1) and (2) are friend number.

Now your task is to judge whether an integer is a friend number.
 

Input

There are several lines in input, each line has a nunnegative integer a, 0<=a<=2^30.
 

Output

For the number a on each line of the input, if a is a friend number, output “YES!”, otherwise output “NO!”.
 

Sample Input

3
13121
12131
 

Sample Output

YES!
YES!
NO!

由题意,如果n = a+b+ab,a和b都是friend number

那么(n+1) = (a+1) * (b+1),

然后我记friend number叫做好数。

那么2和3是好数。

然后两个好数相乘也是好数。

由于其他数首先都是由2和3生出的,所以好数必然是2^k * 3^p。

接下来证明所有2^k * 3^p都是好数。

反证:

若2^k * 3^p不是好数,那么2^(k-1) * 3^p必然也不是好数,否则2^(k-1) * 3^p和2相乘会导致2^k * 3^p也是好数。

然后递降下来说明了3^p也不是好数。

同理说明了3不是好数。

矛盾!

所以所有2^k * 3^p都是好数。

于是判断好数只需要先把二因子除去,这里采用位运算优化。

然后除去3因子,判断最后结果是不是1。这里打表保存了3的所有指数密进行判断。

能判断好数了,自然能判断friend number了。不过需要对0进行特判。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <set>
#define LL long long using namespace std; const int maxn = <<; set <LL> s; void Init()
{
int now = ;
s.insert();
for (;;)
{
if (now > maxn)
break;
s.insert(now);
now = *now + ;
}
now = ;
for (;;)
{
if (now > maxn)
break;
s.insert(now);
now = *now + ;
} now = ;
for (;;)
{
if (now > maxn)
break;
s.insert(now);
now = *now + ;
}
} bool judge(LL n)
{
if (no.find(n) != no.end())
return false;
if (s.find(n) != s.end())
return true;
n++;
int len = sqrt(n);
for (int i = ; i <= len; ++i)
{
if (n % i)
continue;
if (judge(i-)&&judge(n/i-))
{
s.insert(n);
return true;
}
}
no.insert(n);
return false;
} int main()
{
//freopen("test.in", "r", stdin);
LL n;
Init();
while (scanf("%I64d", &n) != EOF)
{
if (judge(n))
printf("YES!\n");
else
printf("NO!\n");
}
return ;
}

ACM学习历程—HDU1719 Friend(数论)的更多相关文章

  1. ACM学习历程—HDU5668 Circle(数论)

    http://acm.hdu.edu.cn/showproblem.php?pid=5668 这题的话,假设每次报x个,那么可以模拟一遍, 假设第i个出局的是a[i],那么从第i-1个出局的人后,重新 ...

  2. ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...

  3. ACM学习历程—HDU5666 Segment(数论)

    http://acm.hdu.edu.cn/showproblem.php?pid=5666 这题的关键是q为质数,不妨设线段上点(x0, y0),则x0+y0=q. 那么直线方程则为y = y0/x ...

  4. ACM学习历程—HDU5585 Numbers(数论 || 大数)(BestCoder Round #64 (div.2) 1001)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5585 题目大意就是求大数是否能被2,3,5整除. 我直接上了Java大数,不过可以对末尾来判断2和5, ...

  5. ACM学习历程—SNNUOJ 1239 Counting Star Time(树状数组 && 动态规划 && 数论)

    http://219.244.176.199/JudgeOnline/problem.php?id=1239 这是这次陕西省赛的G题,题目大意是一个n*n的点阵,点坐标从(1, 1)到(n, n),每 ...

  6. ACM学习历程—广东工业大学2016校赛决赛-网络赛F 我是好人4(数论)

    题目链接:http://gdutcode.sinaapp.com/problem.php?cid=1031&pid=5 这个题目一看就是一道数论题,应该考虑使用容斥原理,这里对lcm进行容斥. ...

  7. ACM学习历程—HDU5637 Transform(数论 && 最短路)

    题目链接:http://codeforces.com/problemset/problem/590/A 题目大意是给两种操作,然后给你一个s,一个t,求s至少需要多少次操作到t. 考虑到第一种操作是将 ...

  8. ACM学习历程—BZOJ2956 模积和(数论)

    Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...

  9. ACM学习历程—SNNUOJ1132 余数之和(数论)

    Description F(n) = (n % 1) + (n % 2) + (n % 3) + ...... (n % n).其中%表示Mod,也就是余数.例如F(6) = 6 % 1 + 6 % ...

随机推荐

  1. vim  模式查找

    1. / 正向查找, ?反向查找 2. \v 激活very magic搜索模式,撰写正则表达式更接近于perl的正则表达式,大多数字符不需要进行转义 3. \V 激活noVeryMagic模式,按字符 ...

  2. python 和 mysql连接

    python 和 mysql连接 虫师教程:http://www.cnblogs.com/fnng/p/3565912.html 其他教程pymysql:http://www.cnblogs.com/ ...

  3. 推荐TED演讲:20岁光阴不再来(Why 30 is not the new 20)

    缘起 早上起来在电脑上看到"自强不息"群(群号)中骆宏给大家分享的视频."20岁光阴不再来",利用短暂的时间浏览了一下.就像把这个TED视频分享给很多其它的朋友 ...

  4. Mongodb亿级数据量的性能测试

    进行了一下Mongodb亿级数据量的性能测试,分别测试如下几个项目:   (所有插入都是单线程进行,所有读取都是多线程进行) 1) 普通插入性能 (插入的数据每条大约在1KB左右) 2) 批量插入性能 ...

  5. ubuntu14.04设置sublime text3为默认文本编辑器

    更新时间2017年07月20日17:35:04 原来的方法貌似并不试用,现在才发现,其实ubuntu下也和Windows下一样... 右键,属性,然后如图所示 set as default 即可. 之 ...

  6. The Gray World Assumption

    Color Constancy 色彩恒常性(2)The Gray World Assumption act=qbbkrzydb_20150408_01" style="line-h ...

  7. Encoding::CompatibilityError: incompatible character encodings: GBK and UTF-8

    直接grunt serve读的css是.tmp/css/main.css 而这个文件不通过build生成出来是这样: /* Encoding::CompatibilityError: incompat ...

  8. delphi视频聊天

    用Delphi开发视频聊天软件 一.引言 我们知道视频聊天软件的关键技术在于采集视频,并实时传输给聊天软件在线的人.对于视频的采集,这里采用微软公司的关于数字视频的一个软件包VFW(Video for ...

  9. 九度OJ 1158:买房子 (基础题)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1801 解决:1096 题目描述: 某程序员开始工作,年薪N万,他希望在中关村公馆买一套60平米的房子,现在价格是200万,假设房子价格以每 ...

  10. python中的特殊用法

    1 别名 from xxx import xxx as xxx;