YNOI 做题记
YNOI 做题记
偶然有一天做到了其中的一道题,于是便开始做相关的题了……
[Ynoi2015] 我回来了 - 洛谷
这之一场联考搬过来的题……于是考场上写了一个 \(O((n + m)\log^2 n)\) 的代码,然后成功被卡掉,非常慢速。
其实离线,将每一个伤害答案变化的时间做出来,然后加入时间序列后,树状数组维护即可。
其实发现如果询问很多,但是序列没有询问长,很可能考虑离线。
[Ynoi2010] y-fast trie - 洛谷
\(\mathrm{FaKe}\) y-fast trie……
其实有很 naive 的想法就是维护单向的最优。但是很明显,一次修改可能影响到 \(O(n)\) 个关系,所以单向显然是不好的。
其实维护双向最优,因为单向的一定不是最优的,所以完全可以缩减答案候选范围。于是一次修改最多影响到 \(O(1)\) 个关系,显然很优秀,所以小小的用 set 维护即可。
只是很难写,真的可以直接维护边吗?
显然很麻烦,所以需要每次动态的查询双向关系。
[Ynoi2016] 镜中的昆虫 - 洛谷
区间赋值,区间数颜色?\(\mathrm{ODT}\) 的复杂度真的很对!
先有单点修改,区间数颜色,依据套路,维护 \(pre\) 即可,发现每次修改会影响 \(O(1)\) 个 \(pre\),所以分块维护 \(pre\) 即可。
但是区间?对于信息的重复修改显然是不优的,所以有结论区间赋值对于 \(pre\) 的影响是 \(O(n + m)\) 的。
因为区间中的 \(pre\) 显然有 \(pre_i = i - 1\)。所以会影响到的其实只有颜色段的两端。
由于每次至多增加 \(4\) 个端点(认为 \(O(1)\)),原本有 \(O(n)\) 个端点,所以最多会影响到 \(O(n + m)\) 个端点,也就是影响 \(O(n + m)\) 次 \(pre_i\)。
但是,\(\mathrm{ODT}\) 之所以不用合并相同的节点,其实在于是随机数据,还有也就是本题的 \(O(n + m)\) 的性质吧。
然后 \(Luogu ~ \mathrm {RK4~?}\)
[Ynoi2016] 掉进兔子洞 - 洛谷
好厉害的想法!
每一个区间出现了那些数是好记的,但是合起来就不知道出现的多少次了。
离散化怎么离散化呢?可以记第 \(k\) 个出现的 \(x\) 为 \(x + k - 1\)。于是就可以了?
所以没有 unique 的离散化和 bitset 套莫队!
inline void add(int x) {
cur[x + ++cnt[x] - 1] = true;
}
inline void del(int x) {
cur[x + --cnt[x]] = false;
}
但是为了规避出现 \(l > r\) 的情况,在莫队转移的时候需要先向外扩展,再向内缩。
while (r < q.r) add(a[++r]);
while (l > q.l) add(a[--l]);
while (r > q.r) del(a[r--]);
while (l < q.l) del(a[l++]);
这是必要的(否则在 add 和 del 中需要特判 \(> 0\),但是这会很慢)。
所以说 bitset 套莫队这个套路还是十分套路的(废话)
[Ynoi2007] rcn / [Ynoi2003] 博丽灵梦 - 洛谷
这道题没了……在 \(Luogu\) 上看不了,\(LibreOJ\) 上也没有。
题意是有 \(n\) 个点,坐标为 \((i, p_i)\),其类型为 \(c_i \in [1, n]\),每一个类型有一个权值 \(w_i\)。
其中 \(p\) 是一个排列,多次询问求矩形中所有存在类型的权值之和。
这,上二维数颜色了啊……可是排列!发现如果莫队移动每一次就只会修改一个点,也就是说只会影响 \(O(1)\) 个 \(pre\),所以可以分块维护 \(pre\),但是需要 \(O(1)\) 修改,\(O(\sqrt n)\) 查询。
发现加入不好维护,所以利用不增莫队,只是删除。
问题在于分块如何 \(O(1)\) 修改,\(O(\sqrt n)\) 查询。这本质上是一个二维数点问题,所以可以二维分块,可以参考 [Ynoi2007] rdiq - 洛谷,属于是二维分块板板了(可是二离常数更小!)
还是太弱了,只会 \(O(\sqrt n)\) 修改,以及 \(O(\sqrt n \log n)\) 查询,如果是这样,套莫队就变成了 \(O(n \sqrt n \times \sqrt n + m \sqrt n \log n)\),这复杂度看着都抽象 QwQ
其实本题好像就是 [Ynoi2003] 博丽灵梦 - 洛谷,问题不大,慢慢做吧这。
YNOI 做题记的更多相关文章
- 「Ynoi2015」我回来了
「Ynoi2015」我回来了 这东西已经不是 Ynoi 了,因为太水被嫌弃了. 如何提升自己的数据结构能力?从Ynoi做起 题目链接 其实这个题很小清新的辣,而且不卡常. 由于边权为 \(1\),所以 ...
- Ynoi 数据结构题选做
Ynoi 数据结构题选做 前言 我将成为数据结构之神!坚持 lxl 党的领导,紧随 nzhtl1477(女装灰太狼1477)的脚步.无论过去.现在还是未来,分块始终是实现 data structure ...
- 我为什么喜欢用C#来做并发编程
(此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:就语言和运行时层面,C#做并发编程一点都不弱,缺的是生态和社区. 硅谷才女朱赟(我的家 ...
- 利用session做国际化引起的old区内存爆满及修复方法
题记:昨天加班打车回家,看见前面有辆路虎在高速上开的巨慢,挡住了我坐的出租车的路,于是就跟司机吐槽了一句:“前面这车怎么这么面啊?”,司机沉默了大概3秒,说了一句富含哲理性的话:“没有面车,只有面人” ...
- CentOS 7 安装Nginx做反向代理
题记 须要使用nginx的反向代理功能,測试环境为centos+NGINX 1.8.0. 跳过一些繁琐的问题,直接记录核心 步骤 (1)centos 安装在VM中.因此须要注意网络连接问题 (2)安装 ...
- Ynoi专练
为了练习分块 莫队 bitset黑科技 我会写几道Ynoi 放到这里. bitset 每一位占1bit int 每一位占 4 bitye bool占1 bitye long long 8bitye L ...
- 用php做注册审核
做注册审核就像前面讲的注册登录一样,也是要连接数据库 首先在数据库内要做这样一张表: 表名为users表 里面的列名分别为用户名,密码,姓名,性别,生日,账户的状态,照片 然后就可以写代码了,要注册的 ...
- 我们是怎么做Code Review的
前几天看了<Code Review 程序员的寄望与哀伤>,想到我们团队开展Code Review也有2年了,结果还算比较满意,有些经验应该可以和大家一起分享.探讨.我们为什么要推行Code ...
- 传播正能量——做一个快乐的程序员
引子 今天在博客园看到施瓦小辛格的文章我们搞开发的为什么会感觉到累,顿时有感而发.自己本来不擅长写文章,更不擅长写这种非技术性的文章,但是在思绪喷薄之际,还是止不住有很多话要说.针对从客观上说&quo ...
- 为什么做java的web开发我们会使用struts2,springMVC和spring这样的框架?
今年我一直在思考web开发里的前后端分离的问题,到了现在也颇有点心得了,随着这个问题的深入,再加以现在公司很多web项目的控制层的技术框架由struts2迁移到springMVC,我突然有了一个新的疑 ...
随机推荐
- WPF/C#:如何显示具有层级关系的数据
前言 比方说我们有以下两个类: public class Class { public string? Name { get; set; } public List<Student>? S ...
- 【笔记】connect by中的nocycle
connect by主要用于父子,祖孙,上下级等层级关系的查询 常用的是prior,nocycle prior: 查询父行的限定符,格式: prior column1 = column2 or col ...
- HL7消息结构
HL7消息用于在不同的医疗保健系统之间传输电子数据,每个消息发送相关特定事件(例如患者入院)的信息.HL7消息采用人类可读格式,本节介绍HL7消息的内容以及HL7消息的组织方式. HL7消息由一个或多 ...
- Apsara Stack 同行者专刊 | 政企混合云技术架构的演进和发展
简介: 现在,政企客户已进入到用云计算全面替换传统IT基础架构的攻坚阶段,混合云与传统架构的技术产品能力也正在经历全面的比较与评估.阿里云混合云平台首席架构师张晓丹分享IT架构技术深刻洞察,并对政企混 ...
- Flink SQL 1.11 on Zeppelin 平台化实践
简介: 鉴于有很多企业都无法配备专门的团队来解决 Flink SQL 平台化的问题,那么到底有没有一个开源的.开箱即用的.功能相对完善的组件呢?答案就是本文的主角--Apache Zeppelin. ...
- 慢sql治理经典案例分享
简介:菜鸟供应链金融慢sql治理已经有一段时间,自己负责的应用持续很长时间没有慢sql告警,现阶段在推进组内其他成员治理应用慢sql.这里把治理过程中的一些实践拿出来分享下. 作者 | 如期 来 ...
- 如何快速开发 Serverless Devs Package ?
简介:目前,开发者开发 Serverless Package 的流程相对来说是比较简单的.因为在 Serverless Devs 开发者工具中,已经提供了相对完整的脚手架能力,一文了解详情~ 作 ...
- OpenKruise v0.10.0 版本发布:新增应用弹性拓扑管理、应用防护等能力
简介: 阿里云开源的云原生应用自动化管理套件.CNCF Sandbox 项目 -- OpenKruise,今天发布 v0.10.0 新版本,这也会是 OpenKruise v1.0 之前的最后一个 m ...
- [FAQ] Large files detected. You may want to try Git Large File Storage
Git 提交文件大于 100M 时提示需要使用 Git LFS. Ubuntu 安装示例: $ curl -s https://packagecloud.io/install/repositories ...
- WinUI 3 修复非打包应用运行提示缺少 Windows App Runtime 环境
本文将告诉大家如何修复 WinUI 3 非打包的应用,在分发给到客户时,在客户的机器上运行提示缺少 Windows App Runtime 环境 在用户的机器上提示的 Windows App Runt ...