\(\small{(本文统一将c[i]视作cost,w[i]视作worth,下面的代码用这两个变量表示费用和价值)}\)

\(\Large\textbf{1. 01背包}\)

  • \(\large\textbf{描述:}\)

    有n个物品,每个物品只有一件,第i个物品体积为vi,价格为ci。现在有一个体积为V的背包,请你从n件物品里选出若干件放进背包里,使得背包里的物品价值最大。
  • \(\large\textbf{思路:}\)

    01背包的特点是:每种物品只有一件,可以选择放或不放。

    我们可以根据此特点进行动态规划(DP),设f[i][j]表示前i件物品放入一个容量为j的背包中可以获得的最大价值,则易得状态转移方程
dp[i][j]=max(dp[i-1][j],dp[i-1][j-c[i]]+w[i])

(详解:在“将前i个物品放入容量为j的背包中”的这个子问题中,由题意,我们只有\(\textbf{放}\)或\(\textbf{不放}\)两种选择,那么就转化为一个只与前i-1个物品有关的问题。如果不放第i件物品,那么就是“前i-1件物品放入容量为j的背包中”,最大价值为f[i-1][j];如果放第i件物品,那么就是“前i-1件物品放入剩下的容量为j-c[i]的背包中”,最大价值为f[i-1][j-c[i]]+w[i])

由此可得01背包的\(\textbf{最原始}\)代码

$\large\textbf{code}$
#include<bits/stdc++.h>
using namespace std;
#define N 1010
#define Elaina 0
int n,m,V,c[N],w[N],dp[N][N],ans=0;
void bag(){
for(int i=1;i<=n;i++){
for(int j=1;j<=V;j++){
dp[i][j]=dp[i-1][j];
if(j>=c[i]){
dp[i][j]=max(dp[i-1][j],dp[i-1][j-c[i]]+w[i]);
}
}
}
}
int main(){
cin>>n>>V;
for(int i=1;i<=n;i++){
cin>>c[i]>>w[i];
}
bag();
cout<<dp[n][V];
return Elaina;
}

以上代码的时间和空间的复杂度均为O(V*N),其中时间已经不能进一步优化了,但是空间可以

\(\textbf{滚动数组优化code}\)

code
#include<bits/stdc++.h>
using namespace std;
#define N 1010
#define Elaina 0
int n,m,V,c[N],w[N],ans=0;
int dp[2][N];//滚动数组优化 只开2行数组
void bag(){
for(int i=1;i<=n;i++){
for(int j=1;j<=V;j++){
dp[i&1][j]=dp[(i-1)&1][j];
if(j>=c[i]){
dp[i&1][j]=max(dp[i&1][j],dp[(i-1)&1][j-c[i]]+w[i]);
}
}
}
}
int main(){
cin>>n>>V;
for(int i=1;i<=n;i++){
cin>>c[i]>>w[i];
}
bag();
cout<<dp[n&1][V];
return Elaina;
}

\(\textbf{一维优化code}\)

code
#include<bits/stdc++.h>
using namespace std;
#define N 1010
#define Elaina 0
int n,m,V,c[N],w[N],ans;
int dp[N];//一维数组优化
void bag(){
for(int i=1;i<=n;i++){
for(int j=V;j>=c[i];j--){
dp[j]=max(dp[j],dp[j-c[i]]+w[i]);
}
}
}
int main(){
cin>>n>>V;
for(int i=1;i<=n;i++){
cin>>c[i]>>w[i];
}
bag();
cout<<dp[V];
return Elaina;
}

\(\Large\textbf{2. 完全背包}\)

  • \(\large\textbf{描述:}\)

    设有n种物品,每种物品有一个重量及一个价值。但每种物品的数量是无限的,同时有一个背包,最大载重量为M,今从n种物品中选取若干件(同一种物品可以多次选取),使其重量的和小于等于M,而价值的和为最大。
  • \(\large\textbf{思路:}\)

    完全背包的特点是:每种物品有无数件,可以选择放若干件或不放。

    设k为取的物品的数量,依据01背包思路,易得状态转移方程为
dp[i][j]=max(dp[i-1][j],dp[i-1][j-k*c[i]]+k*w[i])

完整代码为

$\large\textbf{code}$
#include<bits/stdc++.h>
using namespace std;
#define N 10100
#define Elaina 0
int n,m,V,c[N],w[N],dp[N][N],ans=0;
void bag(){
for(int i=1;i<=n;i++){
for(int j=1;j<=V;j++){
for(int k=0;k*c[i]<=j;k++){
dp[i][j]=max(dp[i-1][j],dp[i-1][j-k*c[i]]+k*w[i]);
}
}
}
}
int main(){
cin>>V>>n;
for(int i=1;i<=n;i++){
cin>>c[i]>>w[i];
}
bag();
cout<<dp[n][V];
return Elaina;
}

\(\textbf{一维优化code}\)

code
#include<bits/stdc++.h>
using namespace std;
#define N 10100
#define Elaina 0
int n,m,V,c[N],w[N],dp[N],ans=0;
void bag(){
for(int i=1;i<=n;i++){
for(int j=c[i];j<=V;j++){
dp[j]=max(dp[j],dp[j-c[i]]+w[i]);
}
}
}
int main(){
cin>>V>>n;
for(int i=1;i<=n;i++){
cin>>c[i]>>w[i];
}
bag();
cout<<dp[V];
return Elaina;
}

\(\Large\textbf{3. 多重背包}\)

  • \(\large\textbf{描述:}\)

    有N种物品和一个容量为V的背包。第i ii种物品最多有p[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
  • \(\large\textbf{思路:}\)

    这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有p[i]+1种策略:取0件,取1件……取p[i]件。令dp[i][j]表示前i种物品恰放入一个容量为j的背包的最大价值,则有状态转移方程:
dp[i][j]=max(dp[i][j],dp[i-1][j-k*c[i]]+k*w[i])
$\large\textbf{code}$
#include<bits/stdc++.h>
using namespace std;
#define N 10100
#define Elaina 0
int n,m,V,c[N],w[N],dp[N][N],s[N];
void bag(){
for(int i=1;i<=n;i++){
for(int j=1;j<=V;j++){
for(int k=0;k<=s[i]&&k*c[i]<=j;k++){
dp[i][j]=max(dp[i][j],dp[i-1][j-k*c[i]]+k*w[i]);
}
}
}
}
int main(){
cin>>n>>V;
for(int i=1;i<=n;i++){
cin>>c[i]>>w[i]>>s[i];
}
bag();
cout<<dp[n][V];
return Elaina;
}

\(\textbf{一维优化code}\)

code
#include<bits/stdc++.h>
using namespace std;
#define N 1010
#define Elaina 0
int n,m,V,c[N],w[N],dp[N],s[N];
void bag(){
for(int i=1;i<=n;i++){
for(int j=V;j>=0;j--){
for(int k=0;k<=s[i]&&k*c[i]<=j;k++){
dp[j]=max(dp[j],dp[j-k*c[i]]+k*w[i]);
}
}
}
}
int main(){
cin>>n>>V;
for(int i=1;i<=n;i++){
cin>>c[i]>>w[i]>>s[i];
}
bag();
cout<<dp[V];
return Elaina;
}

\(\Large\textbf{4. 混合背包}\)

  • \(\large\textbf{描述:}\)

    一个旅行者有一个最多能用V公斤的背包,现在有n件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为C1,C2,...,Cn。有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包)。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

(就是把前01背包、完全背包、多重背包搓起来 搓吧搓吧就出来了(^_−)☆)

直接请出代码君

code
#include<bits/stdc++.h>
using namespace std;
#define N 10100
#define inf 0x3f3f3f3f
#define Elaina 0
int idx=0,n,V,c[N],w[N],dp[N],s[N],ans=inf;
void bag(){
for (int i=1; i<=n; i++){
if(s[i]==1){
for(int j=V;j>=c[i];j--){
dp[j]=max(dp[j],dp[j-c[i]]+w[i]);
}
}
else if(s[i]==0){
for(int j=c[i];j<=V;j++){
dp[j]=max(dp[j],dp[j-c[i]]+w[i]);
}
}else{
for(int j=V;j>=0;j--){
for(int k=0;k<=s[i]&&k*c[i]<=j;k++){
dp[j]=max(dp[j],dp[j-k*c[i]]+k*w[i]);
}
}
}
}
}
int main(){
cin>>V>>n;
for(int i=1;i<=n;i++){
cin>>c[i]>>w[i]>>s[i];
}
bag();
cout<<dp[V];
return Elaina;
}

\(\Large\textbf{5. 分组背包}\)

  • \(\large\textbf{描述:}\)

    一个旅行者有一个最多能用V公斤的背包,现在有n件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为C1,C2,...,Cn。这些物品被划分为若干组,每组中的物品互相冲突,最多选一件。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大
  • \(\large\textbf{死路:}\)

    这个问题变成了每组物品有若干种策略:是选择本组的某一件,还是一件都不选。也就是说设dp[k][j]表示前k组物品花费费用j能取得的最大价值,则有:
dp[k][j]=max(dp[k][j],dp[k-1][j-c[i]]+w[i]

\(\textbf{一维优化code}\)

code
#include<bits/stdc++.h>
using namespace std;
#define N 10100
#define ll long long
#define inf 0x3f3f3f3f
#define Elaina 0
int n,t,V,T,c[N],w[N],dp[N],g[N][N];
void bag(){
for (int i=1; i<=T; i++){
for(int j=V;j>=0;j--){
for(int k=1;k<=g[i][0];k++){
int x=g[i][k];
if(j>=c[x]){
dp[j]=max(dp[j],dp[j-c[x]]+w[x]);
}
}
}
}
}
int main(){
cin>>V>>n>>T;
for(int i=1;i<=n;i++){
cin>>c[i]>>w[i]>>t;
g[t][++g[t][0]]=i;
}
bag();
cout<<dp[V];
return Elaina;
}

回顾复习之背包DP的更多相关文章

  1. 复习1背包dp

    背包问题是对于一个有限制的容器,一般计算可以装的物品的价值最值或数量.通常每个物品都有两个属性空间和价值,有时还有数量或别的限制条件,这个因体而异. 背包大概分成3部分,下面会细述这最经典的3种题型 ...

  2. 算法复习——背包dp

    1.01背包 二维递推式子: 代码: ;i<=n;i++) ;x--) ][x-w[i]]+c[i],f[i-][x]); ][x]; printf("%d",f[n][m] ...

  3. hdu 2844 混合背包【背包dp】

    http://acm.hdu.edu.cn/showproblem.php?pid=2844 题意:有n种纸币面额(a1,a2,...an),每种面额对应有(c1,c2,...cn)张.问这些钱能拼成 ...

  4. 背包dp整理

    01背包 动态规划是一种高效的算法.在数学和计算机科学中,是一种将复杂问题的分成多个简单的小问题思想 ---- 分而治之.因此我们使用动态规划的时候,原问题必须是重叠的子问题.运用动态规划设计的算法比 ...

  5. hdu 5534 Partial Tree 背包DP

    Partial Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...

  6. HDU 5501 The Highest Mark 背包dp

    The Highest Mark Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...

  7. Codeforces Codeforces Round #319 (Div. 2) B. Modulo Sum 背包dp

    B. Modulo Sum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/577/problem/ ...

  8. noj [1479] How many (01背包||DP||DFS)

    http://ac.nbutoj.com/Problem/view.xhtml?id=1479 [1479] How many 时间限制: 1000 ms 内存限制: 65535 K 问题描述 The ...

  9. HDU 1011 树形背包(DP) Starship Troopers

    题目链接:  HDU 1011 树形背包(DP) Starship Troopers 题意:  地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...

  10. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

随机推荐

  1. 06-Shell内置命令

    1.内置命令介绍 Shell 内置命令,就是由 Bash Shell 自身提供的命令,而不是文件系统中的可执行文件. 使用type 来确定一个命令是否是内置命令: type 命令 通常来说,内置命令会 ...

  2. 03-Shell环境变量深入

    1. 自定义系统环境变量 1.1 全局配置文件/etc/profile应用场景 当前用户进入Shell环境初始化的时候会加载全局配置文件/etc/profile里面的环境变量, 供给所有Shell程序 ...

  3. 基于AHB_BUS的eFlash控制器RTL

    eFlash控制器的RTL gvim 操作 gg -- 跳到首页 GG -- 按住shift,跳到尾部 ctrl+V --> 上下键选择行 --> shift+i -->输入 --& ...

  4. Mygin实现上下文

    本篇是Mygin的第三篇 目的 将路由独立出来,方便后续扩展修改 上下文Context,对http.ResponseWriter和http.Request进行封装,实现对JSON.HTML等的支持 路 ...

  5. [转帖]【性能】大页内存 (HugePages)在通用程序优化中的应用

    目录 1. 背景 2. 基于指纹的音乐检索简介 3. 原理 4. 小页的困境 5. 大页内存的配置和使用 6. 大页内存的优化效果 7. 大页内存的使用场景 8. 总结 LD_PRELOAD用法 原文 ...

  6. [转帖]KingbaseES不同字符类型比较转换规则

    https://www.cnblogs.com/kingbase/p/14798059.html Postgresql 常用的字符数据类型的有char.varchar和text,其中 char 固定长 ...

  7. [转帖]如何在Linux系统中使用命令发送邮件

    https://zhuanlan.zhihu.com/p/96897532 Linux系统更多的被用来做服务器系统,在运维的过程中难免我们需要编写脚本监控一些指标并定期发送邮件. 本教程将介绍如何在L ...

  8. [转帖] 常见的Socket网络异常场景分析

    https://www.cnblogs.com/codelogs/p/16001770.html 原创:打码日记(微信公众号ID:codelogs),欢迎分享,转载请保留出处. 简介# 在目前微服务的 ...

  9. chaincode中使用第三方库

    本作品采用署名-非商业性使用-相同方式共享 4.0 国际 (CC BY-NC-SA 4.0)进行许可,使用时请注明出处. 在fabric的chaincode开发时,有时候需要用到第三方库提供的功能.这 ...

  10. python从新手到安装指南

    说到python我是跟着官方文档自学入门,本文适用于windows 操作系统,基于Inter和amd的CPU(涵盖市面80%的电脑) 下载和安装python 对于window操作系统的初学者,进入 p ...