[HAOI2007,P2216,BZOJ1047]理想的正方形单调队列解法
题目描述
有一个 \(a \times b\) 的整数组成的矩阵,现请你从中找出一个 \(n \times n\) 的正方形区域,使得该区域所有数中的最大值和最小值的差最小。
输入格式
第一行为 \(3\) 个整数,分别表示 \(a,b,n\) 的值。
第二行至第 \(a+1\) 行每行为 \(b\) 个非负整数,表示矩阵中相应位置上的数。每行相邻两数之间用一空格分隔。
输出格式
仅一个整数,为 \(a \times b\) 矩阵中所有“ \(n \times n\) 正方形区域中的最大整数和最小整数的差值”的最小值。
输入输出样例
输入 #1
5 4 2
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2
输出 #1
1
说明/提示
问题规模。
矩阵中的所有数都不超过 \(1,000,000,000\)。
\(20\%\) 的数据 \(2 \le a,b \le 100,n \le a,n \le b,n \le 10\)。
\(100\%\) 的数据 \(2 \le a,b \le 1000,n \le a,n \le b,n \le 100\)。
代码展示
一看就是单调队列
#include <iostream>
#include <deque>
using namespace std;
const int N = 1024;
int G[N][N];
deque<pair<int, int>> _maxn;
deque<pair<int, int>> _minn;
int maxn[N][N];
int minn[N][N];
int maxn2[N][N];
int minn2[N][N];
int ans_max[N][N];
int ans_min[N][N];
int main()
{
int a, b, n;
cin >> a >> b >> n;
for (int i = 1; i <= a; i++)
{
for (int j = 1; j <= b; j++)
{
cin >> G[i][j];
}
}
for (int i = 1; i <= a; i++)
{
for (int j = 1; j <= b; j++)
{
while (!_maxn.empty() && _maxn.front().second <= j - n)
_maxn.pop_front();
while (!_minn.empty() && _minn.front().second <= j - n)
_minn.pop_front();
while (!_maxn.empty() && _maxn.back().first < G[i][j])
_maxn.pop_back();
while (!_minn.empty() && _minn.back().first > G[i][j])
_minn.pop_back();
_maxn.push_back(make_pair(G[i][j], j));
_minn.push_back(make_pair(G[i][j], j));
if (j >= n)
{
maxn[i][j] = _maxn.front().first;
minn[i][j] = _minn.front().first;
}
}
_maxn.clear();
_minn.clear();
}
for (int i = n; i <= b; i++)
{
for (int j = 1; j <= a; j++)
{
while (!_maxn.empty() && _maxn.front().second <= j - n)
_maxn.pop_front();
while (!_minn.empty() && _minn.front().second <= j - n)
_minn.pop_front();
while (!_maxn.empty() && _maxn.back().first < maxn[j][i])
_maxn.pop_back();
while (!_minn.empty() && _minn.back().first > minn[j][i])
_minn.pop_back();
_maxn.push_back(make_pair(maxn[j][i], j));
_minn.push_back(make_pair(minn[j][i], j));
if (j >= n)
{
ans_max[j][i] = _maxn.front().first;
ans_min[j][i] = _minn.front().first;
}
}
_maxn.clear();
_minn.clear();
}
int ans = 0x3f3f3f3f;
for (int i = n; i <= a; i++)
for (int j = n; j <= b; j++)
ans = min(ans, ans_max[i][j] - ans_min[i][j]);
cout << ans;
return 0;
}
[HAOI2007,P2216,BZOJ1047]理想的正方形单调队列解法的更多相关文章
- P2216 [HAOI2007]理想的正方形 (单调队列)
题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...
- BZOJ1047: [HAOI2007]理想的正方形 [单调队列]
1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2857 Solved: 1560[Submit][St ...
- 洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP
洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一 ...
- bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp
题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2369 Solved: 1266[Submi ...
- BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )
单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...
- bzoj1047/luogu2216 理想的正方形 (单调队列)
开b组单调队列,分别维护此时某一列中的最大/最小值 然后我每次把它们的头取出来,塞到维护行的单调队列里,就是n*n的最大/最小值 #include<bits/stdc++.h> #defi ...
- Luogu 2216[HAOI2007]理想的正方形 - 单调队列
Solution 二维单调队列, 这个数组套起来看得我眼瞎... Code #include<cstdio> #include<algorithm> #include<c ...
- BZOJ 1047: [HAOI2007]理想的正方形 单调队列瞎搞
题意很简明吧? 枚举的矩形下边界和右端点即右下角,来确定矩形位置: 每一个纵列开一个单调队列,记录从 i-n+1 行到 i 行每列的最大值和最小值,矩形下边界向下推移的时候维护一下: 然后在记录的每一 ...
- [HAOI2007] 理想的正方形 (单调队列)
题目链接 Solution MD,经过这道题,算是掌握单调队列了... 可以先预处理出点 \((i,j)\) 往上 \(n\) 的最大值和最小值. 然后再横着做一遍单调队列即可. Code #incl ...
- BZOJ 1047 理想的正方形(单调队列)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1047 题意:给出一个n*m的矩阵.在所有K*K的子矩阵中,最大最小差值最小的是多少? 思 ...
随机推荐
- chrome浏览器配置自定义搜索引擎
chrome谷歌浏览器配置自定义搜索引擎 放弃百度搜索已经酝酿许久,现在搜索结果简直不忍直视.如果你想放弃使用百度搜索,并转向其他搜索引擎,头条搜索可能是一个不错的选择. 使用以下方式可以丝滑的使用其 ...
- 【Azure 应用服务】App Service for Container中配置与ACR(Azure Container Registry)的RABC权限
问题描述 在使用App Service for container时,在从ACR(Azure Container Registry)中获取应用的镜像时,需要使用对应的权限.默认情况为在ACR中启用Ad ...
- 【Azure Developer】Python 读取 json文件及过滤出需要的结果
问题描述 首先,有名为 campsites.json 的JSON数据文件,数据格式为 { "type": "FeatureCollection", " ...
- 【Azure 环境】当在Azure 环境中调用外部接口不通时,如何定位SSL Certificate Problem
问题描述 如果在Azure VM中,发现同一个API,一台VM可以访问成功,另外一台访问失败.如何来调试并定位问题呢? 问题分析 第一步,查看访问外部API不通时候出现什么错误.如果没有明确的错误消息 ...
- 微信小程序测试点,9大方面全方位总结
微信小程序无需下载安装,用户在微信扫一扫或搜索即可使用,小程序版本类型可分为:开发版.体验版.正式版. 开发版.体验版无需审核,只需要给微信号权限,经过扫小程序的二维码就能访问,正式版本需要经过微信审 ...
- Codeforces Round 926 (Div. 2)(A~D)
目录 A B C D A 输出最大值减最小值,或者排序算一下答案 #include <bits/stdc++.h> #define int long long #define rep(i, ...
- 读书笔记:CSAPP 11章 网络编程
深入理解计算机系统 第11章 本章代码:Index of /afs/cs/academic/class/15213-f15/www/code/22-netprog2 其中包含本章课本示例代码,测试 T ...
- ip 表单验证 vue iview
ip 表单验证 vue iview template <Row v-show="config.bindIP"> <Col span="12"& ...
- Vue3 好文收藏
实用!最新的几个 Vue 3 重要特性提案 http://www.zyiz.net/tech/detail-142574.html
- a++和++a的运算区别是?
a++和++a 都属于自增运算符, 区别是对变量a的值进行自增的时机不同. a++是先进行取值,后进行自增.++a是先进行自增,后进行取值.