题目描述

有一个 \(a \times b\) 的整数组成的矩阵,现请你从中找出一个 \(n \times n\) 的正方形区域,使得该区域所有数中的最大值和最小值的差最小。

输入格式

第一行为 \(3\) 个整数,分别表示 \(a,b,n\) 的值。

第二行至第 \(a+1\) 行每行为 \(b\) 个非负整数,表示矩阵中相应位置上的数。每行相邻两数之间用一空格分隔。

输出格式

仅一个整数,为 \(a \times b\) 矩阵中所有“ \(n \times n\) 正方形区域中的最大整数和最小整数的差值”的最小值。

输入输出样例

输入 #1

5 4 2
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2

输出 #1

1

说明/提示

问题规模。

矩阵中的所有数都不超过 \(1,000,000,000\)。

\(20\%\) 的数据 \(2 \le a,b \le 100,n \le a,n \le b,n \le 10\)。

\(100\%\) 的数据 \(2 \le a,b \le 1000,n \le a,n \le b,n \le 100\)。

代码展示

一看就是单调队列

#include <iostream>
#include <deque>
using namespace std; const int N = 1024; int G[N][N]; deque<pair<int, int>> _maxn;
deque<pair<int, int>> _minn; int maxn[N][N];
int minn[N][N]; int maxn2[N][N];
int minn2[N][N]; int ans_max[N][N];
int ans_min[N][N]; int main()
{
int a, b, n;
cin >> a >> b >> n;
for (int i = 1; i <= a; i++)
{
for (int j = 1; j <= b; j++)
{
cin >> G[i][j];
}
}
for (int i = 1; i <= a; i++)
{
for (int j = 1; j <= b; j++)
{
while (!_maxn.empty() && _maxn.front().second <= j - n)
_maxn.pop_front();
while (!_minn.empty() && _minn.front().second <= j - n)
_minn.pop_front();
while (!_maxn.empty() && _maxn.back().first < G[i][j])
_maxn.pop_back();
while (!_minn.empty() && _minn.back().first > G[i][j])
_minn.pop_back();
_maxn.push_back(make_pair(G[i][j], j));
_minn.push_back(make_pair(G[i][j], j)); if (j >= n)
{
maxn[i][j] = _maxn.front().first;
minn[i][j] = _minn.front().first;
}
}
_maxn.clear();
_minn.clear();
}
for (int i = n; i <= b; i++)
{
for (int j = 1; j <= a; j++)
{
while (!_maxn.empty() && _maxn.front().second <= j - n)
_maxn.pop_front();
while (!_minn.empty() && _minn.front().second <= j - n)
_minn.pop_front();
while (!_maxn.empty() && _maxn.back().first < maxn[j][i])
_maxn.pop_back();
while (!_minn.empty() && _minn.back().first > minn[j][i])
_minn.pop_back();
_maxn.push_back(make_pair(maxn[j][i], j));
_minn.push_back(make_pair(minn[j][i], j)); if (j >= n)
{
ans_max[j][i] = _maxn.front().first;
ans_min[j][i] = _minn.front().first;
}
}
_maxn.clear();
_minn.clear();
}
int ans = 0x3f3f3f3f;
for (int i = n; i <= a; i++)
for (int j = n; j <= b; j++)
ans = min(ans, ans_max[i][j] - ans_min[i][j]);
cout << ans;
return 0;
}

[HAOI2007,P2216,BZOJ1047]理想的正方形单调队列解法的更多相关文章

  1. P2216 [HAOI2007]理想的正方形 (单调队列)

    题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...

  2. BZOJ1047: [HAOI2007]理想的正方形 [单调队列]

    1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2857  Solved: 1560[Submit][St ...

  3. 洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP

    洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一 ...

  4. bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp

    题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2369  Solved: 1266[Submi ...

  5. BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )

    单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...

  6. bzoj1047/luogu2216 理想的正方形 (单调队列)

    开b组单调队列,分别维护此时某一列中的最大/最小值 然后我每次把它们的头取出来,塞到维护行的单调队列里,就是n*n的最大/最小值 #include<bits/stdc++.h> #defi ...

  7. Luogu 2216[HAOI2007]理想的正方形 - 单调队列

    Solution 二维单调队列, 这个数组套起来看得我眼瞎... Code #include<cstdio> #include<algorithm> #include<c ...

  8. BZOJ 1047: [HAOI2007]理想的正方形 单调队列瞎搞

    题意很简明吧? 枚举的矩形下边界和右端点即右下角,来确定矩形位置: 每一个纵列开一个单调队列,记录从 i-n+1 行到 i 行每列的最大值和最小值,矩形下边界向下推移的时候维护一下: 然后在记录的每一 ...

  9. [HAOI2007] 理想的正方形 (单调队列)

    题目链接 Solution MD,经过这道题,算是掌握单调队列了... 可以先预处理出点 \((i,j)\) 往上 \(n\) 的最大值和最小值. 然后再横着做一遍单调队列即可. Code #incl ...

  10. BZOJ 1047 理想的正方形(单调队列)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1047 题意:给出一个n*m的矩阵.在所有K*K的子矩阵中,最大最小差值最小的是多少? 思 ...

随机推荐

  1. Android内存优化—内存优化总结

    内存优化总结 内存问题 内存抖动:导致GC导致卡顿 内存泄漏:导致频繁GC,可用内存减少 内存溢出:导致OOM 工具排查 AS中的Profiler查看内存情况,是否锯齿状,是否持续上升 MAT排查 L ...

  2. jquery实现轮播图切换

    这个是我模仿网易云的音乐界面写的轮播图,主要实现的功能有 1.每隔4秒图片和对应的背景颜色一起切换 2.点击翻页会跳转到相对应的图片以及背景上 3.点击左右翻页,实现顺序切换 <1>HTM ...

  3. macOS通过ssh使用PEM登录

    在win上面可以使用XSHELL来登录类似于亚马逊这样的安全服务器,在mac上面就可以使用系统自带的命令工具来连接 使用命令 ssh -i key.pem [server] 如下: ssh -i ke ...

  4. Javascript之Object、Array

    Object.keys 对象的键转化为数组 Object.values 对象的属性值转化为数组 Object.assign 对象的合并   Array.from() 伪数组对象的属性值转化为数组.类似 ...

  5. 【Azure Cloud Service】Cloud Service(Classic) 迁移失败,找不到解决方案怎么办?

    问题描述 很老很老的云服务,在迁移到 Cloud Service(Extended Support)[云服务外延支持] 时,迁移的验证步骤不通过,因为资源中没有包含虚拟网络(Virtual Netwo ...

  6. 聊聊图数据库和图数据库的小知识 Vol.02

    2010 年前后,对于社交媒体网络研究的兴起带动了图计算的大规模应用. 2000 年前后热门的是 信息检索 和 分析 ,主要是 Google 的带动,以及 Amazon 的 e-commerce 所用 ...

  7. 手把手教你蜂鸟e203协处理器的扩展

    NICE协处理器 赛题要求:   对蜂鸟E203 RISC-V内核进行运算算子(譬如加解密算法.浮点运算.矢量运算等)的扩展,可通过NICE协处理器接口进行添加,也可直接实现RISC-V指令子集(譬如 ...

  8. Java 常用类 String类与其他结构之间的转换-----String 与 byte[]之间的转换

    1 /** 2 * 3 * String 与 byte[]之间的转换 4 * 编码:String ---> byte[]:调用String的getBytes() 5 * 解码:byte[]--- ...

  9. C++ //统计元素个数 //统计内置数据类型 //统计自定义数据类型

    1 //统计元素个数 2 3 #include<iostream> 4 #include<string> 5 #include<vector> 6 #include ...

  10. 10、zookeeper客户端curator

    curator介绍 https://blog.csdn.net/wo541075754/article/details/68067872 关于第三方客户端的小介绍 zkClient有对dubbo的一些 ...