# 初学STM32 CAN通信(一)

1. CAN协议简介

​ CAN是控制器局域网络(Controller Area Network)的简称, 是国际上应用最广泛的现场总线之一 ,近年来,它具有的高可靠性和良好的错误检测能力受到重视,被广泛应用于汽车计算机控制系统和环境温度恶劣、电磁辐射强及振动大的工业环境。

​ 与I2C、 SPI等具有时钟信号的同步通讯方式不同, CAN通讯并不是以时钟信号来进行同步的,它是一种异步通讯,只具有CAN_HighCAN_Low两条信号线,共同构成一组差分信号线,以差分信号的形式进行通讯。

CAN物理层的形式主要分为闭环总线开环总线网络两种,一个适合于高速通讯,一个适合于远距离通讯。

​ CAN总线上可以挂载多个通讯节点,节点之间的信号经过总线传输,实现节点间通讯。由于CAN通讯协议不对节点进行地址编码,而是对数据内容进行编码,所以网络中的节点个数理论上不受限制,只要总线的负载足够即可,可以通过中继器增强负载。

​ CAN通讯节点由一个CAN控制器及CAN收发器组成,控制器与收发器之间通过CAN_Tx及CAN_Rx信号线相连,收发器与CAN总线之间使用CAN_High及CAN_Low信号线相连。其中CAN_Tx及CAN_Rx使用普通的类似TTL逻辑信号,而CAN_High及CAN_Low是一对差分信号线,使用比较特别的差分信号。

​ 当CAN节点需要发送数据时,控制器把要发送的二进制编码通过CAN_Tx线发送到收发器,然后由收发器把这个普通的逻辑电平信号转化成差分信号,通过差分线CAN_High和CAN_Low线输出到CAN总线网络。而通过收发器接收总线上的数据到控制器时,则是相反的过程,收发器把总线上收到的CAN_High及CAN_Low信号转化成普通的逻辑电平信号,通过CAN_Rx输出到控制器中。

2. 差分信号

差分信号又称差模信号,与传统使用单根信号线电压表示逻辑的方式有区别,使用差分信号传输时,需要两根信号线,这两个信号线的振幅相等,相位相反,通过两根信号线的电压差值来表示逻辑0和逻辑1。

相对于单信号线传输的方式,使用差分信号传输具有如下优点:

抗干扰能力强,当外界存在噪声干扰时,几乎会同时耦合到两条信号线上,而接收端只关心两个信号的差值,所以外界的共模噪声可以被完全抵消。

能有效抑制它对外部的电磁干扰,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。

时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。

由于差分信号线具有这些优点,所以在USB协议、 485协议、以太网协议及CAN协议的物理层中,都使用了差分信号传输

CAN协议中的差分信号

CAN协议中对它使用的CAN_High及CAN_Low表示的差分信号做了规定。以高速CAN协议为例,当表示逻辑1(隐性电平), CAN_High和CAN_Low线上的电压均为2.5v,即它们的电压差VH - VL=0 V;而表示逻辑0时(显性电平), CAN_High的电平为3.5V, CAN_Low线的电平为1.5V,即它们的电压差为VH - VL=2 V。

3. 位时序

​ 由于CAN属于异步通讯,没有时钟信号线,连接在同一个总线网络中的各个节点会像串口异步通讯那样,节点间使用约定好的波特率进行通讯,特别地, CAN还会使用“位同步”的方式来抗干扰、吸收误差,实现对总线电平信号进行正确的采样,确保通讯正常。

​ 为了实现位同步, CAN协议把每一个数据位的时序分解成SS段、 PTS段、PBS1段、 PBS2段,这四段的长度加起来即为一个CAN数据位的长度。分解后最小的时间单位是Tq,而一个完整的位由8~25个Tq组成。

​ 图中表示的CAN通讯信号每一个数据位的长度为19 Tq,其中SS段占1 Tq,PTS段占6 Tq, PBS1段占5 Tq, PBS2段占7 Tq。信号的采样点位于PBS1段与PBS2段之间,通过控制各段的长度,可以对采样点的位置进行偏移,以便准确地采样 。

SS段(SYNC SEG)

SS译为同步段,若通讯节点检测到总线上信号的跳变沿被包含在SS段的范围之内,则表示节点与总线的时序是同步的,当节点与总线同步时,采样点采集到的总线电平即可被确定为该位的电平。 SS段的大小固定为1 Tq。

• PTS段(PROP SEG)

PTS译为传播时间段,这个时间段是用于补偿网络的物理延时时间。是总线上输入比较器延时和输出驱动器延时总和的两倍。 PTS段的大小可以为1~8 Tq。

• PBS1段(PHASE SEG1)

PBS1译为相位缓冲段,主要用来补偿边沿阶段的误差,它的时间长度在重新同步的时候可以加长。 PBS1段的初始大小可以为1~8 Tq。

• PBS1段(PHASE SEG1),

PBS1译为相位缓冲段,主要用来补偿边沿阶段的误差,它的时间长度在重新同步的时候可以加长。 PBS1段的初始大小可以为1~8 Tq。

4. CAN的报文种类及结构

报文的种类

数据帧的结构图 :

​ 数据帧以一个显性位(逻辑0)开始,以7个连续的隐性位(逻辑1)结束,在它们之间,分别有仲裁段、控制段、数据段、 CRC段和ACK段 。

• 帧起始

​ SOF段(Start Of Frame),译为帧起始, 帧起始信号只有一个数据位,是一个显性电平,它用于通知各个节点将有数据传输,其它节点通过帧起始信号的电平跳变沿来进行硬同步

• 仲裁段

当同时有两个报文被发送时,总线会根据仲裁段的内容决定哪个数据包能被传输,仲裁段的内容主要为本数据帧的ID信息(标识符),数据帧具有标准格式扩展格式两种,区别就在于ID信息的长度,标准格式的ID为11位扩展格式的ID为29位,它在标准ID的基础上多出18位。

RTR位 (Remote Transmission Request Bit),译作远程传输请求位,它是用于区分数据帧遥控帧的,当它为显性电平时表示数据帧,隐性电平时表示遥控帧。

IDE位(Identifier Extension Bit),译作标识符扩展位,它是用于区分标准格式扩展格式,当它为显性电平时表示标准格式,隐性电平时表示扩展格式。

SRR位(Substitute Remote Request Bit),只存在于扩展格式,它用于替代标准格式中的RTR位。由于扩展帧中的SRR位为隐性位, RTR在数据帧为显性位,所以在两个ID相同的标准格式报文与扩展格式报文中,标准格式的优先级较高。

• 控制段

在控制段中的r1和r0为保留位,默认设置为显性位。它最主要的是DLC段(DataLength Code),译为数据长度码,它由4个数据位组成,用于表示本报文中的数据段含有多少个字节, DLC段表示的数字为0~8。

• 数据段

数据段为数据帧的核心内容,它是节点要发送的原始信息,由0~8个字节组成,MSB先行。

• CRC段

为了保证报文的正确传输, CAN的报文包含了一段15位的CRC校验码一旦接收节点算出的CRC码跟接收到的CRC码不同,则它会向发送节点反馈出错信息,利用错误帧请求它重新发送。 CRC部分的计算一般由CAN控制器硬件完成,出错时的处理则由软件控制最大重发数。在CRC校验码之后,有一个CRC界定符,它为隐性位,主要作用是把CRC校验码与后面的ACK段间隔起来。

• ACK段

ACK段包括一个ACK槽位ACK界定符位。类似I2C总线,在ACK槽位中,发送节点发送的是隐性位,而接收节点则在这一位中发送显性位以示应答。在ACK槽和帧结束之间由ACK界定符间隔开。

• 帧结束

EOF段(End Of Frame),译为帧结束,帧结束段由发送节点发送的7个隐性位表示结束。

其他报文:


初学STM32 CAN通信(一)的更多相关文章

  1. Stm32串口通信(USART)

    Stm32串口通信(UART) 串口通信的分类 串口通信三种传递方式 串口通信的通信方式 串行通信的方式: 异步通信:它用一个起始位表示字符的开始,用停止位表示字符的结束.其每帧的格式如下: 在一帧格 ...

  2. STM32 串口通信使用奇偶校验

    STM32串口通信如果使用奇偶校验,需要设置数据位长度为9bit USART_InitStructure.USART_BaudRate = 9600; USART_InitStructure.USAR ...

  3. STM32串口通信UART使用

    STM32串口通信UART使用 uart使用的过程为: 1. 使能GPIO口和UART对应的总线时钟 2. 配置GPIO口的输出模式 3. 配置uart口相关的基本信息 4. 使能uart口的相关的中 ...

  4. STM32 USB-HID通信移植步骤

    大家可以使用压缩包中的UsbApp.exe调试本软件idVendor为:0483  idProduct为5750. 今天太晚了,明天还要上半天班,上位机软件找个时间在写一篇文章.请关注我的博客.压缩包 ...

  5. stm32串口通信实验,一点笔记

    第一次深入学习stm32,花了好长时间才看懂代码(主要是C语言学习不够深入),又花了段时间自己敲了一遍,然后比对教程,了解了利用中断来串口通信的设置方法. 板子是探索版f407,本实验工程把正点原子库 ...

  6. stm32之通信

    本文提到的内容有以下几个方面: 通信概述 串口通信 I2C通信 CAN通信 SPI通信 I2S通信 USB通信 其他通信 一.通信概述 按照数据传送方式分: 串行通信(一条数据线.适合远距离传输.控制 ...

  7. STM32 CAN通信

    最近在STM32上开发CAN通信相关内容,转载一篇个人认为不错的文章,看完了基本算明白了,能够实际操作了. 原文地址:  https://blog.csdn.net/ludaoyi88/article ...

  8. STM32串口通信配置(USART1+USART2+USART3+UART4) (转)

    一.串口一的配置(初始化+中断配置+中断接收函数) 1 /*====================================================================== ...

  9. STM32串口通信USART1转USART2问题解决

    使用的是STM32f103ZET6. 1.把文件main.c和usart.c中的所有usart1换成usart2 2.查看手册得知USART2的引脚是Tx->PA2,Rx->PA3,改变u ...

  10. 半吊子的STM32 — SPI通信

    全双工,同步串行通信. 一般需要三条线通信: MOSI 主设备发送,从设备接收 MISO 主设备接收,从设备发送 SCLK 时钟线 多设备时,多线选取从机: 传输过程中,主从机中的移位寄存器中数据相互 ...

随机推荐

  1. 通过performance_schema获取造成死锁的事务语句(转)

    数据库日常维护中我们经常遇到死锁的问题,由于无法获取造成死锁的事务内执行过的语句,对我们死锁的分析造成很大的困难.但是在MySQL 5.7中我们可以利用performance_schema来获取这些语 ...

  2. Springboot中如何使用日志框架logback和log4j2?

    说明 在这个简短的教程中,我们将探索 Spring Boot 中可用的主要日志记录选项:logback和log4j2 初始设置 使用 starters 时,默认使用 Logback 进行日志记录. 让 ...

  3. Spring Boot图书管理系统项目实战-3.用户登录

    导航: pre:  2.项目搭建 next:4.基础信息管理 只挑重点的讲,具体的请看项目源码. 1.项目源码 需要源码的朋友,请捐赠任意金额后留下邮箱发送:) 2.登录页设计 <!DOCTYP ...

  4. letcode-Z字抖动

    题目 将一个给定字符串 s 根据给定的行数 numRows ,以从上往下.从左到右进行 Z 字形排列. 比如输入字符串为 "PAYPALISHIRING" 行数为 3 时,排列如下 ...

  5. 【LeetCode二叉树#00】二叉树的基础知识

    基础知识 分类 满二叉树 如果二叉树中除了叶子结点,每个结点的度都为 2,则此二叉树称为满二叉树. 完全二叉树 除了底层外,其他部分是满的,且底层从左到右是连续的,称为完全二叉树 满二叉树一定是完全二 ...

  6. 【Azure Fabric Service】怎样关闭 Azure Service Fabric?

    问题描述 怎样关闭Azure Service Fabric服务呢?在Azure门户上没有找到 Stop 按钮. 问题回答 Azure Service Fabric 默认是无法停止的,可以删除. 虽然可 ...

  7. Sliver C2通关渗透攻击红队内网域靶场2.0

    准备 2012 server 第一台机器开机后,要在C:\Oracle\Middleware\Oracle_Home\user_projects\domains\base_domain​手动运行下 s ...

  8. WOX 和 everything 差不多,挺不错也

    WOX 和 everything 差不多,挺不错也

  9. 定义pod的hosts文件(HostAliases)

    通过HostAliases 向 Pod /etc/hosts 文件添加条目 当 DNS 配置以及其它选项不合理的时候,通过向 Pod 的 /etc/hosts 文件中添加条目, 可以在 Pod 级别覆 ...

  10. day32-JQuery05

    jQuery05 9.作业 9.1homework01 对多选框进行操作,输出选中的多选框的个数,并且把选中爱好的名称显示. <!DOCTYPE html> <html lang=& ...