机器学习决策树ID3算法,python实现代码
机器学习决策树ID3算法,python实现代码
看到techflow介绍ID3算法,中间有代码示例。代码尝试执行力下,发现有错误。
https://www.cnblogs.com/techflow/p/12935130.html
经过整理,错误排查完毕。分享出来
import numpy as np
import math
from collections import Counter, defaultdict
# 保证每次运行的结果一致
np.random.seed(100)
def create_data():
X1 = np.random.rand(50, 1)*100
X2 = np.random.rand(50, 1)*100
X3 = np.random.rand(50, 1)*100
def f(x):
return 2 if x > 70 else 1 if x > 40 else 0
y = X1 + X2 + X3
Y = y > 150
Y = Y + 0
r = map(f, X1)
X1 = list(r)
r = map(f, X2)
X2 = list(r)
r = map(f, X3)
X3 = list(r)
x = np.c_[X1, X2, X3, Y]
return x, ['courseA', 'courseB', 'courseC']
def calculate_info_entropy(dataset):
n = len(dataset)
# 我们用Counter统计一下Y的数量
labels = Counter(dataset[:, -1])
entropy = 0.0
# 套用信息熵公式
for k, v in labels.items():
prob = v / n
entropy -= prob * math.log(prob, 2)
return entropy
def split_dataset(dataset, idx):
# idx是要拆分的特征下标
splitData = defaultdict(list)
for data in dataset:
# 这里删除了idx这个特征的取值,因为用不到了
splitData[data[idx]].append(np.delete(data, idx))
for k, v in splitData.items():
splitData[k] = np.array(v)
return splitData.keys(), splitData.values()
def choose_feature_to_split(dataset):
n = len(dataset[0])-1
m = len(dataset)
# 切分之前的信息熵
entropy = calculate_info_entropy(dataset)
bestGain = 0.0
feature = -1
for i in range(n):
# 根据特征i切分
split_data = split_dataset(dataset, i)[1]
new_entropy = 0.0
# 计算切分后的信息熵
for data in split_data:
prob = len(data) / m
new_entropy += prob * calculate_info_entropy(data)
# 获取信息增益
gain = entropy - new_entropy
if gain > bestGain:
bestGain = gain
feature = i
return feature
def create_decision_tree(dataset, feature_names):
dataset = np.array(dataset)
counter = Counter(dataset[:, -1])
# 如果数据集值剩下了一类,直接返回
if len(counter) == 1:
return dataset[0, -1]
# 如果所有特征都已经切分完了,也直接返回
if len(dataset[0]) == 1:
return counter.most_common(1)[0][0]
# 寻找最佳切分的特征
fidx = choose_feature_to_split(dataset)
fname = feature_names[fidx]
node = {fname: {}}
feature_names.remove(fname)
# 递归调用,对每一个切分出来的取值递归建树
vals, split_data = split_dataset(dataset, fidx)
for val, data in zip(vals, split_data):
node[fname][val] = create_decision_tree(data, feature_names[:])
return node
dataset, feature_names = create_data()
tree = create_decision_tree(dataset, feature_names.copy())
tree
{'courseA': {0: {'courseC': {0: {'courseB': {0: 0, 1: 0, 2: 0}},
1: 0,
2: {'courseB': {0: 0, 1: 1, 2: 1}}}},
1: {'courseC': {0: 0, 1: {'courseB': {0: 0, 1: 0}}, 2: 1}},
2: {'courseC': {0: {'courseB': {0: 0, 1: 1, 2: 1}},
1: {'courseB': {0: 1, 1: 1, 2: 1}},
2: 1}}}}
def classify(node, feature_names, data):
# 获取当前节点判断的特征
key = list(node.keys())[0]
node = node[key]
idx = feature_names.index(key)
# 根据特征进行递归
pred = None
for key in node:
# 找到了对应的分叉
if data[idx] == key:
# 如果再往下依然还有子树,那么则递归,否则返回结果
if isinstance(node[key], dict):
pred = classify(node[key], feature_names, data)
else:
pred = node[key]
# 如果没有对应的分叉,则找到一个分叉返回
if pred is None:
for key in node:
if not isinstance(node[key], dict):
pred = node[key]
break
return pred
classify(tree, feature_names, [1,0,1])
0
classify(tree, feature_names, [2,2,1])
1
classify(tree, feature_names, [1,1,1])
0
机器学习决策树ID3算法,python实现代码的更多相关文章
- 机器学习决策树ID3算法,手把手教你用Python实现
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第21篇文章,我们一起来看一个新的模型--决策树. 决策树的定义 决策树是我本人非常喜欢的机器学习模型,非常直观容易理解 ...
- 决策树ID3算法--python实现
参考: 统计学习方法>第五章决策树] http://pan.baidu.com/s/1hrTscza 决策树的python实现 有完整程序 决策树(ID3.C4.5.CART ...
- 决策树ID3算法python实现 -- 《机器学习实战》
from math import log import numpy as np import matplotlib.pyplot as plt import operator #计算给定数据集的香农熵 ...
- 机器学习之决策树(ID3)算法与Python实现
机器学习之决策树(ID3)算法与Python实现 机器学习中,决策树是一个预测模型:他代表的是对象属性与对象值之间的一种映射关系.树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每 ...
- 决策树---ID3算法(介绍及Python实现)
决策树---ID3算法 决策树: 以天气数据库的训练数据为例. Outlook Temperature Humidity Windy PlayGolf? sunny 85 85 FALSE no ...
- 02-21 决策树ID3算法
目录 决策树ID3算法 一.决策树ID3算法学习目标 二.决策树引入 三.决策树ID3算法详解 3.1 if-else和决策树 3.2 信息增益 四.决策树ID3算法流程 4.1 输入 4.2 输出 ...
- 数据挖掘之决策树ID3算法(C#实现)
决策树是一种非常经典的分类器,它的作用原理有点类似于我们玩的猜谜游戏.比如猜一个动物: 问:这个动物是陆生动物吗? 答:是的. 问:这个动物有鳃吗? 答:没有. 这样的两个问题顺序就有些颠倒,因为一般 ...
- 决策树ID3算法[分类算法]
ID3分类算法的编码实现 <?php /* *决策树ID3算法(分类算法的实现) */ /* *求信息增益Grain(S1,S2) */ //-------------------------- ...
- Python四步实现决策树ID3算法,参考机器学习实战
一.编写计算历史数据的经验熵函数 from math import log def calcShannonEnt(dataSet): numEntries = len(dataSet) labelCo ...
- 机器学习笔记----- ID3算法的python实战
本文申明:本文原创,如有转载请申明.数据代码来自实验数据都是来自[美]Peter Harrington 写的<Machine Learning in Action>这本书,侵删. Hell ...
随机推荐
- 3.CSS三种基本选择器
三种选择器的优先级: id选择器 > class选择器 > 标签选择器 1.标签选择器:会选择到页面上所有的该类标签的元素 格式: 标签{} 1 <!DOCTYPE html> ...
- 力扣81(java&python)-搜索旋转排序数组 II(中等)
题目: 已知存在一个按非降序排列的整数数组 nums ,数组中的值不必互不相同. 在传递给函数之前,nums 在预先未知的某个下标 k(0 <= k < nums.length)上进行了 ...
- HarmonyOS NEXT应用开发案例——行程地址交换动画
介绍 本示例介绍使用显式动画 animateTo 实现左右地址交换动画.该场景多用于机票.火车票购买等出行类订票软件中. 效果预览图 使用说明 加载完成后显示地址交换动画页面,点击中间的图标,左右两边 ...
- HarmonyOS NEXT应用开发案例——全屏登录页面
全屏登录页面 介绍 本例介绍各种应用登录页面. 全屏登录页面:在主页面点击跳转到全屏登录页后,显示全屏模态页面,全屏模态页面从下方滑出并覆盖整个屏幕,模态页面内容自定义,此处分为默认一键登录方式和其他 ...
- Quick BI新版本功能解读系列之-V3.5
前言Quick BI V3.5版本于2019年11月底正式发布啦!本次大版本在智能.开放.以及可视化等方面都有重磅上新,具体包含智能小Q.开放数据服务.主题模板.以及散点图.地图系列等一系列功能的发布 ...
- 企业版Spark Databricks + 企业版Kafka Confluent 联合高效挖掘数据价值
简介:本文介绍了如何使用阿里云的Confluent Cloud和Databricks构建数据流和LakeHouse,并介绍了如何使用Databricks提供的能力来挖掘数据价值,使用Spark ML ...
- Service Mesh 从“趋势”走向“无聊”
简介: 过去一年,阿里巴巴在 Service Mesh 的探索道路上依旧扎实前行,这种坚定并非只因坚信 Service Mesh 未来一定是云计算基础技术的关键组成部分,还因需要借这一技术趋势去偿还过 ...
- 2021年5.21NCU第四届校赛
比赛地址:http://222.204.50.106/contest/39 A 树上祖先 链接:http://222.204.50.106/contest/39/problem/A B 莎士比亚 链接 ...
- 简说Python之面向对象
目录 Python对象 对象的内置方法 __init__方法 __str__方法 对象的多态 对象的封装 对象的继承 之前介绍了函数.对象代表了什么.可以称为"一篮子"计划,把数据 ...
- ITIL4 服务价值系统(SVS):一场服务管理的革新之旅
在这个数字化时代,每一家企业都在追求高效的服务管理和卓越的客户体验.今天,我们就来聊一聊ITIL4中的服务价值系统(Service Value System, SVS)--一个让服务管理变得更加直观和 ...