火山引擎 DataLeap 构建Data Catalog系统的实践(三):关键技术与总结
更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群
关键技术
数据模型统一
- 类型(Type):描述一类元数据,由多个属性组成。例如,hive table是一类元数据,hive_db也是一类元数据。Type可具备继承关系。按面向对象的编程思想,可以理解type为一个Class。
- 实例(Entity):代表一个type的具体事例。一个entity可能作为一个属性存在于另一个entity中,例如hive_table中的db属性,db本身也是一个entity。在面向对象的编程思想中,一个entity可以认为是一个class的instance。
- 属性(Attribute):属性的集合组合而成为一个Type。属性本身的类型(typeName)可能是一个自定义的type,也可能是一种基础类型,包括date,string等。例如,db是hive_table的一个属性,column也是hive_table的一个属性。
- 关系(Relationship):一种特殊的Entity,用以描述两个Entity之间的关联模式。
- 继承与组合的广泛使用
- 调整类型加载机制
数据接入标准化
- Source:从外部存储计算系统等批量拉取最新的全量元数据。数据结构和字段通常由外部系统决定。概念上可对齐Flink的source operator。
- Diff Operator:接收source的输出,并从Catalog Service拉取当前系统中的全量元数据,做差异对比,产出差异的部分。概念上对齐Flink中的某一种自定义的ProcessFunction。
- Event Generate Operator:接收Diff Operator的输出,根据Catalog系统定义好的格式,将差异的metadata转化成event格式,比如对于新建的metadata,转换成CreateEvent。概念上对齐Flink中的某一种自定义的ProcessFunction。
- Sink:接收Event Generate Operator的输出,将差异的metadata写入Ingestion Service。概念上对齐Flink的sink operator。
- Bridge Job:组装pipeline,做运行时控制。概念上对齐Flink的Job。
搜索优化
- 搜索中存在部分很强的Pattern:用户搜索元数据时,有一些隐式的习惯,通过挖掘埋点中的固定pattern,给了我们针对性优化的机会。
- 行为数据规模有限:公司内部的元数据搜索用户,通常是千级别,而每天搜索的点击次数是万级别,这个规模远远小于对外的通用搜索引擎,也造成很多模型没法及时收敛,但也一定程度上给与我们简化问题的机会。

- 离线部分:负责汇集各类与搜索相关的数据,做数据清洗或者模型训练,根据不同的用途,写入不同的存储,供给在线搜索模块使用。
- 在线部分:分为搜索理解、召回、精排三个主要阶段,步骤和概念上与通用搜索引擎对齐。
- 对于强Pattern,广泛使用Rule-Based的优化手段:比如,火山引擎 DataLeap 研发人员发现很大一部分用户在搜索Hive时,会使用“库名.表名”的pattern,在识别到query语句中有“.”时,火山引擎 DataLeap 研发人员会优先尝试根据库名和表名检索
- 激进的个性化:因用户规模可控,且某位用户通常会频繁使用某个领域的元数据,火山引擎 DataLeap 研发人员记录了很多用户的历史行为细节,当query语句与过去浏览过元数据有一定文本相关性时,个性化相关的得分会有较大提升
血缘能力
存储层优化
读优化:开启MutilPreFetch 能力
写优化:去除Guid全局唯一性检查
|
|
优化前
|
优化后
|
|
小表(10列以内)
|
1~2s
|
<100ms
|
|
中表(100-500列)
|
3-5min
|
2~5s
|
|
超大表(3000列以上)
|
15min以上,经常写入失败
|
0.5~1min,可写入
|
未来工作
火山引擎 DataLeap 构建Data Catalog系统的实践(三):关键技术与总结的更多相关文章
- 火山引擎 DataLeap 的 Data Catalog 系统公有云实践
Data Catalog 通过汇总技术和业务元数据,解决大数据生产者组织梳理数据.数据消费者找数和理解数的业务场景.本篇内容源自于火山引擎大数据研发治理套件 DataLeap 中的 Data Ca ...
- 如何又快又好实现 Catalog 系统搜索能力?火山引擎 DataLeap 这样做
摘要 DataLeap 是火山引擎数智平台 VeDI 旗下的大数据研发治理套件产品,帮助用户快速完成数据集成.开发.运维.治理.资产.安全等全套数据中台建设,降低工作成本和数据维护成本.挖掘数据价 ...
- 字节跳动构建Data Catalog数据目录系统的实践(上)
作为数据目录产品,Data Catalog 通过汇总技术和业务元数据,解决大数据生产者组织梳理数据.数据消费者找数和理解数的业务场景,并服务于数据开发和数据治理的产品体系.本文介绍了字节跳动 Data ...
- 火山引擎 DataLeap:3 个关键步骤,复制字节跳动一站式数据治理经验
更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,并进入官方交流群 DataLeap 是火山引擎数智平台 VeDI 旗下的大数据研发治理套件产品,帮助用户快速完成数据集成.开发.运维.治理. ...
- 火山引擎 DataLeap:揭秘字节跳动数据血缘架构演进之路
更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 DataLeap 是火山引擎数智平台 VeDI 旗下的大数据研发治理套件产品,帮助用户快速完成数据集成.开发.运维 ...
- 火山引擎 DataLeap:一家企业,数据体系要怎么搭建?
更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 导读:经过十多年的发展,数据治理在传统行业以及新兴互联网公司都已经产生落地实践.字节跳动也在探索一种分布式的数据治 ...
- 火山引擎DataLeap数据调度实例的 DAG 优化方案
更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,并进入官方交流群 实例 DAG 介绍 DataLeap 是火山引擎自研的一站式大数据中台解决方案,集数据集成.开发.运维.治理.资产管理能力 ...
- 以字节跳动内部 Data Catalog 架构升级为例聊业务系统的性能优化
背景 字节跳动 Data Catalog 产品早期,是基于 LinkedIn Wherehows 进行二次改造,产品早期只支持 Hive 一种数据源.后续为了支持业务发展,做了很多修修补补的工作,系统 ...
- 使用 Kafka 和 Spark Streaming 构建实时数据处理系统
使用 Kafka 和 Spark Streaming 构建实时数据处理系统 来源:https://www.ibm.com/developerworks,这篇文章转载自微信里文章,正好解决了我项目中的技 ...
- 基于MRS-ClickHouse构建用户画像系统方案介绍
业务场景 用户画像是对用户信息的标签化.用户画像系统通过对收集的各维度数据,进行深度的分析和挖掘,给不同的用户打上不同的标签,从而刻画出客户的全貌.通过用户画像系统,可以对各个用户进行精准定位,从而将 ...
随机推荐
- 题解 CF690C2
题目大意: 给你一棵树,求一下直径 题目分析: emm,怎么说吧,就是树的直径的裸板子. 可能有人不大理解,明明是图,你为什么要说是给定一棵树. 大家可以自行验证一下,满足如下两个性质的是否是一棵树: ...
- .NET开源的处理分布式事务的解决方案
前言 在分布式系统中,由于各个系统服务之间的独立性和网络通信的不确定性,要确保跨系统的事务操作的最终一致性是一项重大的挑战.今天给大家推荐一个.NET开源的处理分布式事务的解决方案基于 .NET St ...
- nginx的keepalive和keepalive_requests(性能测试TPS波动)
当使用nginx作为反向代理时,为了支持长连接,需要做到两点: 从client到nginx的连接是长连接 从nginx到server的连接是长连接 保持和client的长连接: http { keep ...
- 在WPF应用中使用GongSolutions.WPF.DragDrop实现列表集合控件的拖动处理
WPF应用中,控件本身也可以通过实现事件代码实现拖动的处理,不过如果我们使用GongSolutions.WPF.DragDrop来处理,事情会变得更加简单轻松,它支持很多控件的拖动处理,如ListBo ...
- [ABC263B] Ancestor
Problem Statement There are $N$ people, called Person $1$, Person $2$, $\ldots$, Person $N$. The par ...
- 新冠肺炎病毒(Covid-19)检测系统
一 .背景 新冠肺炎是一种新的呼吸道疾病,它由新型冠状病毒引起,而这种病毒以前从未在人类身上发现 过.新冠肺炎如何传播? 新冠肺炎很容易通过与新冠肺炎患者的密切接触(距离约 6 英尺或两臂长范围内)在 ...
- MySQL运维13-Mycat分库分表之按月分片
一.按照月分片 使用场景为按照自然月来分片,每个自然月为一个分片,但是一年有12个月,是不是要有12个数据节点才行呢?并不是.例如我现在只有三个分片数据库,这样就可以1月在第一个数据分片中,2月在第二 ...
- 文心一言 VS 讯飞星火 VS chatgpt (163)-- 算法导论13.1 3题
三.用go语言,定义一棵松弛红黑树(relaxed red-black tree)为满足红黑性质 1.3.4 和5的二叉搜索树.换句话说,根结点可以是红色或是黑色.考虑一棵根结点为红色的松弛红黑树 T ...
- 华企盾DSC防泄密软件造成VS启动报目录错误
解决方法:找到安装路径下的Privateregistry.bin文件解密即可
- 为什么要重写equals()?
为什么要重写equals()? Equals和 == 的区别: ==:是个运算符, 判断是否相等,基本数据类型进行判断 也可判断两个对象相等,比较两个对象的哈希码值 Equals:是个Object类的 ...