多线程生产者消费者模型爬虫

import queue

import requests
from bs4 import BeautifulSoup
import threading
import time
import random def craw(url):
r = requests.get(url=url)
return r.text def parse(html):
soup = BeautifulSoup(html, "html.parser")
links = soup.find_all("a", class_="post-time-title")
return [(link["href"], link.get_test()) for link in links] def do_craw(url_queue: queue.Queue, html_queue: queue.Queue):
while True:
url = url_queue.get()
html = craw(url)
html_queue.put(html)
print(threading.current_thread().name, url)
time.sleep(random.randint(1,2)) def do_parse(html_queue:queue.Queue, f_out):
while True:
html = html_queue.get()
results = parse(html)
for result in results:
f_out.write(str(result) + "\n")
print(threading.current_thread().name, html_queue.qsize())
time.sleep(1) if __name__ == '__main__':
url_queue = queue.Queue()
html_queue = queue.Queue()
for url in ["https://www.cnblogs.com/#p{}".format(i) for i in range(1, 25)]:
url_queue.put(url) for idx in range(3):
t = threading.Thread(target=do_craw, args=(url_queue, html_queue), name=f"craw-{idx}")
t.start() file = open("02.data.txt", "w")
for idx in range(2):
d = threading.Thread(target=do_parse, args=(html_queue, file), name=f"parse-{idx}")
d.start()

多线程池爬虫

from concurrent.futures import ThreadPoolExecutor, as_completed
import requests
from bs4 import BeautifulSoup spider_url = ["https://www.cnblogs.com/#p{}".format(i) for i in range(1, 25)] def craw(url):
r = requests.get(url=url)
return r.text def parse(html):
soup = BeautifulSoup(html, "html.parser")
links = soup.find_all("a", class_="post-time-title")
return [(link["href"], link.get_test()) for link in links] # craw
with ThreadPoolExecutor() as pool:
htmls = pool.map(craw, spider_url)
htmls = list(zip(spider_url, htmls))
for k, v in htmls:
print(k, len(v)) with ThreadPoolExecutor() as pool:
futures = {}
for url, html in htmls:
future = pool.submit(parse, html)
futures[future] = url # for k, v in futures.items():
# print(v, k.result())
for future in as_completed(futures):
print(futures[future], future.result())

协程

import asyncio
import aiohttp spider_url = ["https://www.cnblogs.com/taozhengquan/p/14966535.html"]*50 # 信号量控制爬虫数量
semaphore = asyncio.Semaphore(10) async def async_craw(url):
async with semaphore:
print("craw url:", url)
async with aiohttp.ClientSession() as session:
async with session.get(url) as resp:
result = await resp.text()
print(url, len(result)) loop = asyncio.get_event_loop()
tasks = [
loop.create_task(async_craw(item)) for item in spider_url
]
loop.run_until_complete(asyncio.wait(tasks))

Python 多线程、线程池、协程 爬虫的更多相关文章

  1. python之路32 网络并发线程方法 线程池 协程

    多进程实现TCP服务端并发 服务端: import socket from multiprocessing import Process def get_server(): server = sock ...

  2. python进程.线程和协程的总结

    I.进程: II.多线程threading总结 threading用于提供线程相关的操作,线程是应用系统中工作的最小单位(cpu调用的最小单位). Python当前版本的多线程没有实现优先级,线程组, ...

  3. 互斥锁 线程理论 GIL全局解释器锁 死锁现象 信号量 event事件 进程池与线程池 协程实现并发

    目录 互斥锁 multiprocessing Lock类 锁的种类 线程理论 进程和线程对比 开线程的两种方式(类似进程) 方式1 使用Thread()创建线程对象 方式2 重写Thread类run方 ...

  4. 11.python之线程,协程,进程,

    一,进程与线程 1.什么是线程 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行 ...

  5. 05网络并发 ( GIL+进程池与线程池+协程+IO模型 )

    目录 05 网络并发 05 网络并发

  6. python全栈开发 * 线程队列 线程池 协程 * 180731

    一.线程队列 队列:1.Queue 先进先出 自带锁 数据安全 from queue import Queue from multiprocessing import Queue (IPC队列)2.L ...

  7. python并发编程-进程池线程池-协程-I/O模型-04

    目录 进程池线程池的使用***** 进程池/线程池的创建和提交回调 验证复用池子里的线程或进程 异步回调机制 通过闭包给回调函数添加额外参数(扩展) 协程*** 概念回顾(协程这里再理一下) 如何实现 ...

  8. python 线程(其他方法,队列,线程池,协程 greenlet模块 gevent模块)

    1.线程的其他方法 from threading import Thread,current_thread import time import threading def f1(n): time.s ...

  9. python简单线程和协程学习

    python中对线程的支持的确不够,不过据说python有足够完备的异步网络框架模块,希望日后能学习到,这里就简单的对python中的线程做个总结 threading库可用来在单独的线程中执行任意的p ...

  10. Day037--Python--线程的其他方法,GIL, 线程事件,队列,线程池,协程

    1. 线程的一些其他方法 threading.current_thread()  # 线程对象 threading.current_thread().getName()  # 线程名称 threadi ...

随机推荐

  1. 重新点亮shell————awk 控制语句[十三]

    前言 简单介绍一下控制语句. 正文 例子1: 例子2: 例子3 for循环: 例子4, sum会复用: 同样,其他的while 和 do while 也是可以在awk中使用的. 结 下一节awk数组.

  2. redis 简单整理——客户端通信协议[十五]

    前言 简单介绍一下客户端的通信协议. 正文 第 一,客户端与服务端之间的通信协议是在TCP协议之上构建的. 第二, Redis制定了RESP(REdis Serialization Protocol, ...

  3. List拖拽功能的实现

    概述   如何在HarmonyOS应用中实现一个可拖拽的列表组件,通过这个组件,用户可以拖动列表中的项并将其放置在新的位置,实现列表的动态排序.   核心功能   列表初始化:创建并填充列表数据. 拖 ...

  4. 利用navicat实现excel转json

    1.需要工具,Navicat Premium,网上有破解及安装教程 2.新建sqlite连接,选择新建sqlite3,如下图 3.接着点确定,如图 4. 5.

  5. Kafka 的分片和副本机制

    我们在使用 Kafka 生产和消费消息的时候,肯定是希望能够将数据均匀地分配到所有服务器上.比如在日志收集场景,数据量是非常巨大的,例如大批量的集群每分钟产生的日志都能以 GB 计,所以如何将这么大的 ...

  6. 手动给docusaurus添加一个搜索

    新版博客用docusaurus重构已经有些日子了,根据docusaurus的文档上也申请了Algolia,想一劳永逸的解决博客的搜索问题.但是流水有意,落花无情. algolia总是不给我回复,我只能 ...

  7. IT人的年夜饭,也太香了吧

    ​简介: 平时的IT人,奋战在修复bug前线,起早与贪黑齐飞,调休共假期待定.到了新春佳节,对于IT人来说,没有什么是比一顿年夜饭更让人熨贴肺腑的了.为了让废寝忘食编程序.闻机起早保运维的IT人过一个 ...

  8. 网不好怎么办?TLS握手带宽直降80%,BabaSSL是怎么做到的?| 龙蜥技术

    ​简介:为了保障数据的安全性,客户端会先和服务器进行 TLS 握手,有什么办法可以减少 TLS 握手的带宽消耗呢? 编者按:BabaSSL 是一款开源的密码库产品,在 GitHub 和龙蜥社区开源,并 ...

  9. [BEX] Quasar BEX 提供的那些配置

    Manifest.json https://developer.chrome.com/extensions/manifest Background Script & Content Scrip ...

  10. [TP5] ThinkPHP 默认模块和单模块的设置方式

    由于默认是采用多模块的支持,所以多个模块的情况下必须在URL地址中标识当前模块, 如果只有一个模块的话,可以进行模块绑定,方法是应用的入口文件中添加如下代码: // 绑定当前访问到index模块 de ...