多线程生产者消费者模型爬虫

import queue

import requests
from bs4 import BeautifulSoup
import threading
import time
import random def craw(url):
r = requests.get(url=url)
return r.text def parse(html):
soup = BeautifulSoup(html, "html.parser")
links = soup.find_all("a", class_="post-time-title")
return [(link["href"], link.get_test()) for link in links] def do_craw(url_queue: queue.Queue, html_queue: queue.Queue):
while True:
url = url_queue.get()
html = craw(url)
html_queue.put(html)
print(threading.current_thread().name, url)
time.sleep(random.randint(1,2)) def do_parse(html_queue:queue.Queue, f_out):
while True:
html = html_queue.get()
results = parse(html)
for result in results:
f_out.write(str(result) + "\n")
print(threading.current_thread().name, html_queue.qsize())
time.sleep(1) if __name__ == '__main__':
url_queue = queue.Queue()
html_queue = queue.Queue()
for url in ["https://www.cnblogs.com/#p{}".format(i) for i in range(1, 25)]:
url_queue.put(url) for idx in range(3):
t = threading.Thread(target=do_craw, args=(url_queue, html_queue), name=f"craw-{idx}")
t.start() file = open("02.data.txt", "w")
for idx in range(2):
d = threading.Thread(target=do_parse, args=(html_queue, file), name=f"parse-{idx}")
d.start()

多线程池爬虫

from concurrent.futures import ThreadPoolExecutor, as_completed
import requests
from bs4 import BeautifulSoup spider_url = ["https://www.cnblogs.com/#p{}".format(i) for i in range(1, 25)] def craw(url):
r = requests.get(url=url)
return r.text def parse(html):
soup = BeautifulSoup(html, "html.parser")
links = soup.find_all("a", class_="post-time-title")
return [(link["href"], link.get_test()) for link in links] # craw
with ThreadPoolExecutor() as pool:
htmls = pool.map(craw, spider_url)
htmls = list(zip(spider_url, htmls))
for k, v in htmls:
print(k, len(v)) with ThreadPoolExecutor() as pool:
futures = {}
for url, html in htmls:
future = pool.submit(parse, html)
futures[future] = url # for k, v in futures.items():
# print(v, k.result())
for future in as_completed(futures):
print(futures[future], future.result())

协程

import asyncio
import aiohttp spider_url = ["https://www.cnblogs.com/taozhengquan/p/14966535.html"]*50 # 信号量控制爬虫数量
semaphore = asyncio.Semaphore(10) async def async_craw(url):
async with semaphore:
print("craw url:", url)
async with aiohttp.ClientSession() as session:
async with session.get(url) as resp:
result = await resp.text()
print(url, len(result)) loop = asyncio.get_event_loop()
tasks = [
loop.create_task(async_craw(item)) for item in spider_url
]
loop.run_until_complete(asyncio.wait(tasks))

Python 多线程、线程池、协程 爬虫的更多相关文章

  1. python之路32 网络并发线程方法 线程池 协程

    多进程实现TCP服务端并发 服务端: import socket from multiprocessing import Process def get_server(): server = sock ...

  2. python进程.线程和协程的总结

    I.进程: II.多线程threading总结 threading用于提供线程相关的操作,线程是应用系统中工作的最小单位(cpu调用的最小单位). Python当前版本的多线程没有实现优先级,线程组, ...

  3. 互斥锁 线程理论 GIL全局解释器锁 死锁现象 信号量 event事件 进程池与线程池 协程实现并发

    目录 互斥锁 multiprocessing Lock类 锁的种类 线程理论 进程和线程对比 开线程的两种方式(类似进程) 方式1 使用Thread()创建线程对象 方式2 重写Thread类run方 ...

  4. 11.python之线程,协程,进程,

    一,进程与线程 1.什么是线程 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行 ...

  5. 05网络并发 ( GIL+进程池与线程池+协程+IO模型 )

    目录 05 网络并发 05 网络并发

  6. python全栈开发 * 线程队列 线程池 协程 * 180731

    一.线程队列 队列:1.Queue 先进先出 自带锁 数据安全 from queue import Queue from multiprocessing import Queue (IPC队列)2.L ...

  7. python并发编程-进程池线程池-协程-I/O模型-04

    目录 进程池线程池的使用***** 进程池/线程池的创建和提交回调 验证复用池子里的线程或进程 异步回调机制 通过闭包给回调函数添加额外参数(扩展) 协程*** 概念回顾(协程这里再理一下) 如何实现 ...

  8. python 线程(其他方法,队列,线程池,协程 greenlet模块 gevent模块)

    1.线程的其他方法 from threading import Thread,current_thread import time import threading def f1(n): time.s ...

  9. python简单线程和协程学习

    python中对线程的支持的确不够,不过据说python有足够完备的异步网络框架模块,希望日后能学习到,这里就简单的对python中的线程做个总结 threading库可用来在单独的线程中执行任意的p ...

  10. Day037--Python--线程的其他方法,GIL, 线程事件,队列,线程池,协程

    1. 线程的一些其他方法 threading.current_thread()  # 线程对象 threading.current_thread().getName()  # 线程名称 threadi ...

随机推荐

  1. Native Drawing开发指导,实现HarmonyOS基本图形和字体的绘制

      场景介绍 Native Drawing模块提供了一系列的接口用于基本图形和字体的绘制.常见的应用场景举例: ● 2D图形绘制. ● 文本绘制. 接口说明 接口名 描述 OH_Drawing_Bit ...

  2. 动态规划(五)——坐标dp

    传纸条 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵, 而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了 ...

  3. Mysql安装和远程登录--Centos7

    在Centos7中使用的包管理工具是yum,当然使用包管理工具安装也是最方便的. 本文操作内容需要在root用户下,否则有些步骤无法成功执行. 系统环境信息展示 安装 MySQL 提供的 RPM wg ...

  4. 架构设计|基于 raft-listener 实现实时同步的主备集群

    背景以及需求 线上业务对数据库可用性可靠性要求较高,要求需要有双 AZ 的主备容灾机制. 主备集群要求数据和 schema 信息实时同步,数据同步平均时延要求在 1s 之内,p99 要求在 2s 之内 ...

  5. Java Agent 踩坑之 appendToSystemClassLoaderSearch 问题

    简介: 从 Java Agent 报错开始,到 JVM 原理,到 glibc 线程安全,再到 pthread tls,逐步探究 Java Agent 诡异报错. 作者:鲁严波   从 Java Age ...

  6. 图像检索在高德地图POI数据生产中的应用

    ​简介: 高德通过自有海量的图像源,来保证现实世界的每一个新增的POI及时制作成数据.在较短时间间隔内(小于月度),同一个地方的POI 的变化量是很低的. ​ 作者 | 灵笼.怀迩 来源 | 阿里技术 ...

  7. 庖丁解牛-图解MySQL 8.0优化器查询解析篇

    ​简介: SQL优化器本质上是一种高度抽象化的数据接口的实现,经过该设计,客户可以使用更通用且易于理解的SQL语言,对数据进行操作和处理,而不需要关注和抽象自己的数据接口,极大地解放了客户的应用程序. ...

  8. [FE] 被动检测 iframe 加载 src 成功失败的一种思路和方式 (Vue)

    思路:设置定时器一个,n 秒后设置 404 或其它,此时给 iframe 的 onload 事件设置回调函数,加载完成则取消定时器. 示例: data () { return { handler: n ...

  9. [FAQ] Error: com.mysql.jdbc.Driver not loaded. :jdbc_driver_library

    以上问题出现在 logstash.conf 未配置好 MySQL 的 JDBC 驱动时导致的错误提示. 首先,下载好 MySQL JDBC 驱动库,可以放到 logstash.conf 所在当前目录或 ...

  10. NopCommerce支持多种类型的数据库

    本文章的内容是根据本人阅读NopCommerce源码的理解,如有不对的地方请指正,谢谢. 阅读目录 1.类结构关系图 2.分析 3.NopCommerce应用 类结构关系图 分析 NopObjectC ...