A. Programming Contest

签到题.

输入输出读完应该就懂了:

从y1枚举到y2,若枚举的年份不在停办年份里则答案加一

void solve() {
int n,m;
cin >> n;
vector<int> a(N),year(N);
cin >> m;
for(int i = 0;i < m;i++){
int y;
cin >> y;
year[y] = 1;
}
int y;
cin >> y;
int ans = 0;
for(int i = n;i <= y;i ++)
if(!year[i])
ans++;
cout << ans << endl;
}

C. Trading

每次应该从价格最便宜的商店购买货物,并卖给价格最贵的商店。用双指针模拟这一贪心策略即可.

#include<bits/stdc++.h>
using namespace std; #define LL long long
void solve(){
LL n;
cin >> n;
vector<pair<LL,LL>> a;
for(LL i = 0;i < n;i ++){
LL x,y;
cin >> x >> y;
a.push_back({x,y});
}
LL sum = 0;
sort(a.begin(), a.end());
for(LL i = 0, j = n - 1; i < j; ){
LL x = min(a[i].second, a[j].second);
sum += (a[j].first - a[i].first) * x;
a[i].second -= x;
a[j].second -= x;
if(a[i].second == 0)
i++;
if(a[j].second == 0)
j--; }
cout << sum << endl;
} int main(){
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
LL T;
cin>>T;
while(T--){
solve();
}
return 0;
}

D. New Houses

如果已知 \(k (2\le k \le n)\)个人有邻居,剩下的人没有邻居,怎样选择有邻居的人才能使总满意度最大化?

这是一个经典问题。先假设所有人都是没邻居的,得到总满意度 \(\sum\limits_{i = 1}^n b_i\) 。当第 \(i\) 个人从没邻居变成有邻居时,总满意度将增加 \((a_i - b_i)\)。因此选择 \((a_i - b_i)\) 最大的 \(k\) 个人变成有邻居的即可。排序后可以在 \(\mathcal{O}(n)\)的复杂度内一次性算出 $k = 2, \cdots, n $ 的最大总满意度。

如果 \(k\) 个人有邻居,剩下的人没有邻居,这样的布局至少需要 \(k + 2(n - k) = 2n - k\) 栋房子(即有邻居的人都住在最左边,然后每隔一栋房子住一个没邻居的人)。因此只有满足 \(2n - k \le m\) 才能考虑。

最后,别忘了考虑所有人都没有邻居的情况。这要求 \(m \ge 2n - 1\)。

#include <bits/stdc++.h>
#define endl '\n'
#define int long long using namespace std; const int N = 1e6+10, M = 998244353; typedef unsigned long long ll;
typedef pair<int,int> PII; int n,m,t,k;
map<int,int> mp;
void solve() {
cin >> n >> m;
vector<int> A(n + 1), B(n + 1),ve;
for(int i = 1;i <= n;i ++){
cin >> A[i] >> B[i];
ve.push_back(A[i] - B[i]);
} sort(ve.begin(), ve.end()); int ans = 0, now = 0;
for(int i = 1;i <= n;i ++)
now += B[i]; if(m >= 2 * n - 1)
ans = now; now += ve[n - 1];
for(int i =2;i <= n;i ++){
now += ve[n - i];
if(2 * n - i <= m)
ans = max(ans, now);
} cout << ans << endl;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
int Ke_scholar = 1;
cin >> Ke_scholar;
while(Ke_scholar--)
solve();
return 0;
}
/*
*/
 

I. Path Planning

假设答案为 \(x\),那么存在一条路径,使得从 \(0\) 到 \((x-1)\) 的每个整数都在路径上。这一条件满足二分性,因此我们可以二分答案 \(x\),并检查是否存在这样的路径。

由于每一步只能往右或者往下走,因此将路径上每个格子的坐标按行为第一关键字,列为第二关键字排序后,排在前面的坐标的列编号,一定小于等于排在后面的坐标的列编号。

因此,将从 0 到 \((x-1)\) 的每个整数所在的格子的坐标排序,并检查列编号是否满足以上条件,即可判断是否存在一条路径,使得这些整数都在路径上。实际实现时,不需要使用排序函数。只要依此枚举每个格子,若格子里的整数小于 \(x\) 则把格子加入 vector,这样得到的 vector 就已经按枚举的顺序排序了。

#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define endl '\n'
#define int long long using namespace std; const int N = 1e6+10, M = 998244353; typedef unsigned long long ll;
typedef pair<int,int> PII; int n,m,t,k,a[N];
// 将从 0 到 x - 1 所在的格子坐标“排序”,检查前面的列坐标是否小于等于后面的列坐标
bool check(int x){
// 实际实现时,不需要使用排序函数,
// 直接按顺序枚举每个格子,若格子里的整数小于 x 则把格子加入 vector,
// 这样得到的 vector 就已经按枚举的顺序排序了
// 而且甚至连 vector 也不用真的维护,
// 因为我们只关心 vector 最后一个元素的列坐标,和当前列坐标的大小关系,
// 直接用变量 last 维护最后一个元素的列坐标即可
int last = 0;
for(int i = 0;i <n;i ++){
for(int j = 0;j < m;j ++){
if(a[i * m + j] < x){
if(last > j)
return false;
last = j;
}
}
} return true;
}
void solve() {
cin >> n >> m;
for(int i = 0;i < n;i ++)
for(int j = 0;j <m ;j++)
cin >> a[i * m + j]; int l = 0, r = n * m;
while(l < r){
int mid = (l + r + 1) >> 1;
if(check(mid)) l = mid ;
else r = mid - 1;
} cout << l << endl;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
int Ke_scholar = 1;
cin >> Ke_scholar;
while(Ke_scholar--)
solve();
return 0;
}
/*
*/
 

K. Peg Solitaire

因为数据范围很小,直接模拟暴力就能过

#include<bits/stdc++.h>

using namespace std;

const int N = 1e6+10;

#define int long long

int ans = 100;
int u[] = {0,2,0,-2};
int v[] = {2,0,-2,0};
int uu[] = {0,1,0,-1};
int vv[] = {1,0,-1,0};
int n,m,k;
void dfs(int x,int y, vector<vector<int>>& gg ){ for(int i = 0;i < 4;i ++){
int dx = u[i] + x;
int dy = v[i] + y;
int d1 = uu[i] + x;
int d2 = vv[i] + y;
if(dx > 0 && dy > 0 && dx <= n && dy <= m && gg[d1][d2] && !gg[dx][dy]){
gg[dx][dy] = 1;
gg[x][y] = gg[d1][d2] = 0;
for(int i = 1;i <= n;i ++){
for(int j = 1;j <= m;j ++){
if(gg[i][j]){
auto ggg = gg;
dfs(i,j,ggg);
}
}
}
gg[dx][dy] = 0;
gg[x][y] = gg[d1][d2] = 1;
}
}
int sum = 0;
for(int i = 1;i <= n;i ++)
for(int j = 1;j <= m;j ++)
if(gg[i][j])
sum++;
ans = min(ans, sum);
return ;
}
void solve(){
ans = 100;
cin >> n >> m >> k;
vector<vector<int> > g(n + 1, vector<int> (m + 1, 0));
for(int i = 0;i < k; i++){
int x,y;
cin >> x >> y;
g[x][y] = 1;
}
for(int i = 1;i <= n;i ++){
for(int j = 1;j <= m;j ++){
if(g[i][j]){
auto gg = g;
dfs(i,j,gg);
}
}
}
cout << ans << endl;
} int32_t main() {
ios::sync_with_stdio(false);
cin.tie(nullptr), cout.tie(nullptr);
int T;
cin>>T;
while(T--){
solve();
}
return 0;
}

其余题解参考2023 广东省大学生程序设计竞赛 - SUA Wiki

因为咱很懒,所以有的题解直接拿来用了

SMU Spring 2023 Contest Round 7的更多相关文章

  1. 2015 Astar Contest - Round 3 题解

    1001 数长方形 题目大意 平面内有N条平行于坐标轴的线段,且不会在端点处相交 问共形成多少个矩形 算法思路 枚举4条线段的全部组合.分别作为矩形四条边.推断是否合法 时间复杂度: O(N4) 代码 ...

  2. Contest Round #451 (Div. 2)F/Problemset 898F Restoring the Expression

    题意: 有一个a+b=c的等式,去掉两个符号,把三个数连在一起得到一个数 给出这个数,要求还原等式,length <= 1e6 三个数不能含有前导0,保证有解 解法: 铁头过题法,分类然后各种判 ...

  3. Codeforces Round #284 (Div. 2)A B C 模拟 数学

    A. Watching a movie time limit per test 1 second memory limit per test 256 megabytes input standard ...

  4. Sending messages to non-windowed applications -- AllocateHWnd, DeallocateHWnd

    http://delphi.about.com/od/windowsshellapi/l/aa093003a.htm Page 1: How Delphi dispatches messages in ...

  5. Codeforces 240 F. TorCoder

    F. TorCoder time limit per test 3 seconds memory limit per test 256 megabytes input input.txt output ...

  6. cf499B-Lecture 【map】

    http://codeforces.com/problemset/problem/499/B B. Lecture     You have a new professor of graph theo ...

  7. Why to Not Not Start a Startup

    我花了周六,周日两天的时间,把这篇长文给阅读完了.很受益,改变了我的很多认知,也给我开拓了视野. 转载: Want to start a startup? Get funded by Y Combin ...

  8. Codeforces 240F. TorCoder 线段树

    线段树统计和维护某一区间内的字母个数.. . . F. TorCoder time limit per test 3 seconds memory limit per test 256 megabyt ...

  9. 物联网学生科协第三届H-star现场编程比赛

    问题 A: 剪纸片 时间限制: 1 Sec 内存限制: 128 MB 题目描写叙述 这是一道简单的题目,假如你身边有一张纸.一把剪刀.在H-star的比赛现场,你会这么做: 1. 将这张纸剪成两片(平 ...

  10. [cf contest 893(edu round 33)] F - Subtree Minimum Query

    [cf contest 893(edu round 33)] F - Subtree Minimum Query time limit per test 6 seconds memory limit ...

随机推荐

  1. Django-CBV和跨域请求伪造

    1. django模式 def users(request): user_list = ['alex','oldboy'] return HttpResponse(json.dumps((user_l ...

  2. VSCode 中 Markdown Preview Enhanced 插件利用 Chrome (Puppeteer) 导出 PDF 文件使用说明与问题解决

    准备 预先安装好 Chrome 浏览器. 使用方法 右键选择 Chrome (Puppeteer). 设置 Puppeteer 通过 front-matter 即在 markdown 文档开头加上 y ...

  3. 【AppStore】一文让你学会IOS应用上架Appstore

    前言 咱们国内现在手机分为两类,Android手机与苹果手机,现在用的各类APP,为了手机的使用安全,避免下载到病毒软件,官方都极力推荐使用手机自带的应用商城进行下载,但是国内Android手机品类众 ...

  4. React Router 6

    路由的概念,可以想像一下路由器,当来了一个请求时,路由器做了什么事情?它会把请求的IP地址和路由表进行匹配,匹配成功后,进行转发,直到目标主机.可以看到路由有三部分组成,一个是请求,一个是路由表,一个 ...

  5. 在Winform程序中增加隐藏的按键处理,用于处理一些特殊的界面显示或者系统初始化操作

    以前,我看到一个朋友在对一个系统做初始化的时候,通过一组魔幻般的按键,调出来一个隐藏的系统设置界面,这个界面在常规的菜单或者工具栏是看不到的,因为它是一个后台设置的关键界面,不公开,同时避免常规用户的 ...

  6. 探究kubernetes 探针参数periodSeconds和timeoutSeconds

    探究kubernetes 探针参数 periodSeconds和timeoutSeconds 问题起源 kubernetes probes的配置中有两个容易混淆的参数,periodSeconds和ti ...

  7. windows下使用dockerdesktop进行部署

    Docker部署springboot项目 环境准备 要在windows上使用docker需要确认系统的需求 需要启用虚拟化支持的CPU 启用适用于windows的Linux子系统功能 保证足够的内存 ...

  8. 屏幕分辨率基础概念PX,PT,DP,DPR,DPI说明

    屏幕分辨率基础概念说明 缩写 全称 说明 PX Device Pixels 设备像素,指设备的物理像素 PX CSS Pixels CSS像素,指CSS样式代码中使用的逻辑像素 DOT Dot 点,屏 ...

  9. [oeasy]python0104_指示灯_显示_LED_辉光管_霓虹灯

    编码进化 回忆上次内容 x86.arm.riscv等基础架构 都是二进制的 包括各种数据.指令   但是我们接触到的东西 都是屏幕显示出来的字符   计算机 显示出来的 一个个具体的字型   ​   ...

  10. 常回家看看之largebin_attack

    常回家看看之largebin_attack 先简单介绍一下什么是largebin largebin 是 glibc 的 malloc 实现中用于管理大块内存的一种数据结构.在 glibc 的内存分配中 ...