SMU Spring 2023 Contest Round 7
A. Programming Contest
签到题.
输入输出读完应该就懂了:
从y1枚举到y2,若枚举的年份不在停办年份里则答案加一
void solve() {
int n,m;
cin >> n;
vector<int> a(N),year(N);
cin >> m;
for(int i = 0;i < m;i++){
int y;
cin >> y;
year[y] = 1;
}
int y;
cin >> y;
int ans = 0;
for(int i = n;i <= y;i ++)
if(!year[i])
ans++;
cout << ans << endl;
}
C. Trading
每次应该从价格最便宜的商店购买货物,并卖给价格最贵的商店。用双指针模拟这一贪心策略即可.
#include<bits/stdc++.h>
using namespace std;
#define LL long long
void solve(){
LL n;
cin >> n;
vector<pair<LL,LL>> a;
for(LL i = 0;i < n;i ++){
LL x,y;
cin >> x >> y;
a.push_back({x,y});
}
LL sum = 0;
sort(a.begin(), a.end());
for(LL i = 0, j = n - 1; i < j; ){
LL x = min(a[i].second, a[j].second);
sum += (a[j].first - a[i].first) * x;
a[i].second -= x;
a[j].second -= x;
if(a[i].second == 0)
i++;
if(a[j].second == 0)
j--;
}
cout << sum << endl;
}
int main(){
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
LL T;
cin>>T;
while(T--){
solve();
}
return 0;
}
D. New Houses
如果已知 \(k (2\le k \le n)\)个人有邻居,剩下的人没有邻居,怎样选择有邻居的人才能使总满意度最大化?
这是一个经典问题。先假设所有人都是没邻居的,得到总满意度 \(\sum\limits_{i = 1}^n b_i\) 。当第 \(i\) 个人从没邻居变成有邻居时,总满意度将增加 \((a_i - b_i)\)。因此选择 \((a_i - b_i)\) 最大的 \(k\) 个人变成有邻居的即可。排序后可以在 \(\mathcal{O}(n)\)的复杂度内一次性算出 $k = 2, \cdots, n $ 的最大总满意度。
如果 \(k\) 个人有邻居,剩下的人没有邻居,这样的布局至少需要 \(k + 2(n - k) = 2n - k\) 栋房子(即有邻居的人都住在最左边,然后每隔一栋房子住一个没邻居的人)。因此只有满足 \(2n - k \le m\) 才能考虑。
最后,别忘了考虑所有人都没有邻居的情况。这要求 \(m \ge 2n - 1\)。
#include <bits/stdc++.h>
#define endl '\n'
#define int long long
using namespace std;
const int N = 1e6+10, M = 998244353;
typedef unsigned long long ll;
typedef pair<int,int> PII;
int n,m,t,k;
map<int,int> mp;
void solve() {
cin >> n >> m;
vector<int> A(n + 1), B(n + 1),ve;
for(int i = 1;i <= n;i ++){
cin >> A[i] >> B[i];
ve.push_back(A[i] - B[i]);
}
sort(ve.begin(), ve.end());
int ans = 0, now = 0;
for(int i = 1;i <= n;i ++)
now += B[i];
if(m >= 2 * n - 1)
ans = now;
now += ve[n - 1];
for(int i =2;i <= n;i ++){
now += ve[n - i];
if(2 * n - i <= m)
ans = max(ans, now);
}
cout << ans << endl;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
int Ke_scholar = 1;
cin >> Ke_scholar;
while(Ke_scholar--)
solve();
return 0;
}
/*
*/
I. Path Planning
假设答案为 \(x\),那么存在一条路径,使得从 \(0\) 到 \((x-1)\) 的每个整数都在路径上。这一条件满足二分性,因此我们可以二分答案 \(x\),并检查是否存在这样的路径。
由于每一步只能往右或者往下走,因此将路径上每个格子的坐标按行为第一关键字,列为第二关键字排序后,排在前面的坐标的列编号,一定小于等于排在后面的坐标的列编号。
因此,将从 0 到 \((x-1)\) 的每个整数所在的格子的坐标排序,并检查列编号是否满足以上条件,即可判断是否存在一条路径,使得这些整数都在路径上。实际实现时,不需要使用排序函数。只要依此枚举每个格子,若格子里的整数小于 \(x\) 则把格子加入 vector,这样得到的 vector 就已经按枚举的顺序排序了。
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define endl '\n'
#define int long long
using namespace std;
const int N = 1e6+10, M = 998244353;
typedef unsigned long long ll;
typedef pair<int,int> PII;
int n,m,t,k,a[N];
// 将从 0 到 x - 1 所在的格子坐标“排序”,检查前面的列坐标是否小于等于后面的列坐标
bool check(int x){
// 实际实现时,不需要使用排序函数,
// 直接按顺序枚举每个格子,若格子里的整数小于 x 则把格子加入 vector,
// 这样得到的 vector 就已经按枚举的顺序排序了
// 而且甚至连 vector 也不用真的维护,
// 因为我们只关心 vector 最后一个元素的列坐标,和当前列坐标的大小关系,
// 直接用变量 last 维护最后一个元素的列坐标即可
int last = 0;
for(int i = 0;i <n;i ++){
for(int j = 0;j < m;j ++){
if(a[i * m + j] < x){
if(last > j)
return false;
last = j;
}
}
}
return true;
}
void solve() {
cin >> n >> m;
for(int i = 0;i < n;i ++)
for(int j = 0;j <m ;j++)
cin >> a[i * m + j];
int l = 0, r = n * m;
while(l < r){
int mid = (l + r + 1) >> 1;
if(check(mid)) l = mid ;
else r = mid - 1;
}
cout << l << endl;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
int Ke_scholar = 1;
cin >> Ke_scholar;
while(Ke_scholar--)
solve();
return 0;
}
/*
*/
K. Peg Solitaire
因为数据范围很小,直接模拟暴力就能过
#include<bits/stdc++.h>
using namespace std;
const int N = 1e6+10;
#define int long long
int ans = 100;
int u[] = {0,2,0,-2};
int v[] = {2,0,-2,0};
int uu[] = {0,1,0,-1};
int vv[] = {1,0,-1,0};
int n,m,k;
void dfs(int x,int y, vector<vector<int>>& gg ){
for(int i = 0;i < 4;i ++){
int dx = u[i] + x;
int dy = v[i] + y;
int d1 = uu[i] + x;
int d2 = vv[i] + y;
if(dx > 0 && dy > 0 && dx <= n && dy <= m && gg[d1][d2] && !gg[dx][dy]){
gg[dx][dy] = 1;
gg[x][y] = gg[d1][d2] = 0;
for(int i = 1;i <= n;i ++){
for(int j = 1;j <= m;j ++){
if(gg[i][j]){
auto ggg = gg;
dfs(i,j,ggg);
}
}
}
gg[dx][dy] = 0;
gg[x][y] = gg[d1][d2] = 1;
}
}
int sum = 0;
for(int i = 1;i <= n;i ++)
for(int j = 1;j <= m;j ++)
if(gg[i][j])
sum++;
ans = min(ans, sum);
return ;
}
void solve(){
ans = 100;
cin >> n >> m >> k;
vector<vector<int> > g(n + 1, vector<int> (m + 1, 0));
for(int i = 0;i < k; i++){
int x,y;
cin >> x >> y;
g[x][y] = 1;
}
for(int i = 1;i <= n;i ++){
for(int j = 1;j <= m;j ++){
if(g[i][j]){
auto gg = g;
dfs(i,j,gg);
}
}
}
cout << ans << endl;
}
int32_t main() {
ios::sync_with_stdio(false);
cin.tie(nullptr), cout.tie(nullptr);
int T;
cin>>T;
while(T--){
solve();
}
return 0;
}
其余题解参考2023 广东省大学生程序设计竞赛 - SUA Wiki
因为咱很懒,所以有的题解直接拿来用了
SMU Spring 2023 Contest Round 7的更多相关文章
- 2015 Astar Contest - Round 3 题解
1001 数长方形 题目大意 平面内有N条平行于坐标轴的线段,且不会在端点处相交 问共形成多少个矩形 算法思路 枚举4条线段的全部组合.分别作为矩形四条边.推断是否合法 时间复杂度: O(N4) 代码 ...
- Contest Round #451 (Div. 2)F/Problemset 898F Restoring the Expression
题意: 有一个a+b=c的等式,去掉两个符号,把三个数连在一起得到一个数 给出这个数,要求还原等式,length <= 1e6 三个数不能含有前导0,保证有解 解法: 铁头过题法,分类然后各种判 ...
- Codeforces Round #284 (Div. 2)A B C 模拟 数学
A. Watching a movie time limit per test 1 second memory limit per test 256 megabytes input standard ...
- Sending messages to non-windowed applications -- AllocateHWnd, DeallocateHWnd
http://delphi.about.com/od/windowsshellapi/l/aa093003a.htm Page 1: How Delphi dispatches messages in ...
- Codeforces 240 F. TorCoder
F. TorCoder time limit per test 3 seconds memory limit per test 256 megabytes input input.txt output ...
- cf499B-Lecture 【map】
http://codeforces.com/problemset/problem/499/B B. Lecture You have a new professor of graph theo ...
- Why to Not Not Start a Startup
我花了周六,周日两天的时间,把这篇长文给阅读完了.很受益,改变了我的很多认知,也给我开拓了视野. 转载: Want to start a startup? Get funded by Y Combin ...
- Codeforces 240F. TorCoder 线段树
线段树统计和维护某一区间内的字母个数.. . . F. TorCoder time limit per test 3 seconds memory limit per test 256 megabyt ...
- 物联网学生科协第三届H-star现场编程比赛
问题 A: 剪纸片 时间限制: 1 Sec 内存限制: 128 MB 题目描写叙述 这是一道简单的题目,假如你身边有一张纸.一把剪刀.在H-star的比赛现场,你会这么做: 1. 将这张纸剪成两片(平 ...
- [cf contest 893(edu round 33)] F - Subtree Minimum Query
[cf contest 893(edu round 33)] F - Subtree Minimum Query time limit per test 6 seconds memory limit ...
随机推荐
- Django-CBV和跨域请求伪造
1. django模式 def users(request): user_list = ['alex','oldboy'] return HttpResponse(json.dumps((user_l ...
- VSCode 中 Markdown Preview Enhanced 插件利用 Chrome (Puppeteer) 导出 PDF 文件使用说明与问题解决
准备 预先安装好 Chrome 浏览器. 使用方法 右键选择 Chrome (Puppeteer). 设置 Puppeteer 通过 front-matter 即在 markdown 文档开头加上 y ...
- 【AppStore】一文让你学会IOS应用上架Appstore
前言 咱们国内现在手机分为两类,Android手机与苹果手机,现在用的各类APP,为了手机的使用安全,避免下载到病毒软件,官方都极力推荐使用手机自带的应用商城进行下载,但是国内Android手机品类众 ...
- React Router 6
路由的概念,可以想像一下路由器,当来了一个请求时,路由器做了什么事情?它会把请求的IP地址和路由表进行匹配,匹配成功后,进行转发,直到目标主机.可以看到路由有三部分组成,一个是请求,一个是路由表,一个 ...
- 在Winform程序中增加隐藏的按键处理,用于处理一些特殊的界面显示或者系统初始化操作
以前,我看到一个朋友在对一个系统做初始化的时候,通过一组魔幻般的按键,调出来一个隐藏的系统设置界面,这个界面在常规的菜单或者工具栏是看不到的,因为它是一个后台设置的关键界面,不公开,同时避免常规用户的 ...
- 探究kubernetes 探针参数periodSeconds和timeoutSeconds
探究kubernetes 探针参数 periodSeconds和timeoutSeconds 问题起源 kubernetes probes的配置中有两个容易混淆的参数,periodSeconds和ti ...
- windows下使用dockerdesktop进行部署
Docker部署springboot项目 环境准备 要在windows上使用docker需要确认系统的需求 需要启用虚拟化支持的CPU 启用适用于windows的Linux子系统功能 保证足够的内存 ...
- 屏幕分辨率基础概念PX,PT,DP,DPR,DPI说明
屏幕分辨率基础概念说明 缩写 全称 说明 PX Device Pixels 设备像素,指设备的物理像素 PX CSS Pixels CSS像素,指CSS样式代码中使用的逻辑像素 DOT Dot 点,屏 ...
- [oeasy]python0104_指示灯_显示_LED_辉光管_霓虹灯
编码进化 回忆上次内容 x86.arm.riscv等基础架构 都是二进制的 包括各种数据.指令 但是我们接触到的东西 都是屏幕显示出来的字符 计算机 显示出来的 一个个具体的字型 ...
- 常回家看看之largebin_attack
常回家看看之largebin_attack 先简单介绍一下什么是largebin largebin 是 glibc 的 malloc 实现中用于管理大块内存的一种数据结构.在 glibc 的内存分配中 ...