论文阅读笔记(十三)【arxiv2018】:Revisiting Temporal Modeling for Video-based Person ReID
Introduction
(1)Motivation:
当前的一些video-based reid方法在特征提取、损失函数方面不统一,无法客观比较效果。本文作者将特征提取和损失函数固定,对当前较新的4种行人重识别模型进行比较。
(2)Contribution:
① 对四种ReId方法(temporal pooling, temporal attention, RNN and 3D conv)进行科学合理的比较;
② 提出了一种采用时空卷积提取时间特征的注意力提取网络。
Method
(1)视频片编码(video clip encoder):
将视频切成若干片段 {ck},每个片段含有 T 帧,将每个片段编码成 D 维特征向量 fc ,视频的特征为这些片段取平均值。
① 3D CNN:采用3D ResNet模型,将最后一个分类层替换为行人身份的输出,将 T 帧输入网络中,输出即为特征表示。
对于 2D CNN:采用ResNet-50模型,每次输入一帧图像,每个片段提取 T 次特征,即 {fct},t 属于 [1, T],即 T*D 的特征矩阵,再采用以下方法将特征压缩到特征向量 fc 中。
② 时间池化(temporal pooling):考虑最大池化和平均池化,即:


③ 时间注意力(temporal attention):应用注意力权重,设第 c 个视频段权重因子为 act,其中 t 属于 [1, T]:

Resnet-50的最后卷积层规格 [w, h, 2048],其中 w 和 h 取决于输入图片的尺寸。
注意力提取网络的输入规格 [T, w, h, 2048],输出 T 个注意力得分。
考虑两种注意力网络:
空间卷积+全连接(spatial conv + FC):卷积层规格(kernel = w*h,input channel number = 2048,output channel number = dt),全连接层规格(input channel number = dt,output channel number = 1),输出结果为 sct,其中 t 属于 [1, T].
时空联合卷积(spatial + temporal conv):先通过空间卷积层(kernel = w*h,input channel number = 2048,output channel number = dt),再通过时间卷积层(个人理解参数3的含义是每个元素是由三帧计算而得,input channel number = dt,output channel number = 1),输出结果为 sct,其中 t 属于 [1, T].
使用softmax计算注意力得分 act:

结合正则化(使用sigmoid函数):

④ RNN:考虑两种方法:
直接把隐藏层元素 hT 作为最后结果,即:

计算 RNN 输出 {ot} 的平均值,即:


(2)损失函数:
考虑两种损失函数,三元组损失(Batch Hard triplet loss)和交叉熵损失(Softmax cross-entropy loss)。
每个batch含有 P 个行人视频,每个视频含有 K 个视频片段,即每个batch含有 PK 个视频片段,三元组损失为:

交叉熵损失为:

如何理解?

损失函数:

(3)相似度计算:
通过 L2 距离,计算视频特征的相似度。
Evaluation
(1)实验设置:
数据集:MARS
参数设置:batch size = 32,每个行人抽取4段tracklets,learning rate = 0.0001/0.0003,视频帧的规格为 224*112.(关于batch的设置描述模糊)
(2)实验结果:
① 3D CNN实验比较:

② Temporal pooling实验比较:


③ Temporal attention实验比较:


④ RNN实验比较:




⑤ 对比方法:

论文阅读笔记(十三)【arxiv2018】:Revisiting Temporal Modeling for Video-based Person ReID的更多相关文章
- 论文阅读笔记十三:The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation(FC-DenseNets)(CVPR2016)
论文链接:https://arxiv.org/pdf/1611.09326.pdf tensorflow代码:https://github.com/HasnainRaz/FC-DenseNet-Ten ...
- 论文阅读笔记五十二:CornerNet-Lite: Efficient Keypoint Based Object Detection(CVPR2019)
论文原址:https://arxiv.org/pdf/1904.08900.pdf github:https://github.com/princeton-vl/CornerNet-Lite 摘要 基 ...
- [论文阅读笔记] Are Meta-Paths Necessary, Revisiting Heterogeneous Graph Embeddings
[论文阅读笔记] Are Meta-Paths Necessary? Revisiting Heterogeneous Graph Embeddings 本文结构 解决问题 主要贡献 算法原理 参考文 ...
- 论文阅读笔记 - YARN : Architecture of Next Generation Apache Hadoop MapReduceFramework
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...
- 论文阅读笔记 - Mesos: A Platform for Fine-Grained ResourceSharing in the Data Center
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...
- 论文阅读笔记 Word Embeddings A Survey
论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, ...
- 论文阅读笔记 Improved Word Representation Learning with Sememes
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...
- [置顶]
人工智能(深度学习)加速芯片论文阅读笔记 (已添加ISSCC17,FPGA17...ISCA17...)
这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于 ...
- Nature/Science 论文阅读笔记
Nature/Science 论文阅读笔记 Unsupervised word embeddings capture latent knowledge from materials science l ...
- 论文阅读笔记(二十一)【CVPR2017】:Deep Spatial-Temporal Fusion Network for Video-Based Person Re-Identification
Introduction (1)Motivation: 当前CNN无法提取图像序列的关系特征:RNN较为忽视视频序列前期的帧信息,也缺乏对于步态等具体信息的提取:Siamese损失和Triplet损失 ...
随机推荐
- Ant Design Vue Pro 项目实战-项目初始化(一)
写在前面 时间真快,转眼又是新的一年.随着前后端技术的不断更新迭代,尤其是前端,在目前前后端分离开发模式这样的一个大环境下,交互性.兼容性等传统的开发模式已经显得有些吃力.之前一直用的是react,随 ...
- [Redis-CentOS7]Python操作Redis(十一)
Python 操作redis #!/usr/bin/env pyhton # coding:utf-8 # @Time : 2020-02-16 21:36 # @Author : LeoShi # ...
- 高并发之——不得不说的线程池与ThreadPoolExecutor类浅析
一.抛砖引玉 既然Java中支持以多线程的方式来执行相应的任务,但为什么在JDK1.5中又提供了线程池技术呢?这个问题大家自行脑补,多动脑,肯定没坏处,哈哈哈... 说起Java中的线程池技术,在很多 ...
- Starting MySQL... ERROR! The server quit without updating PID file (/home/mysql-5.6.43/data/localhost.localdomain.pid).
启动MySQL出现如下错误 May :: localhost mysqld: Starting MySQL... ERROR! The server quit without updating PID ...
- leaflet结合geoserver利用WFS服务实现图层新增功能(附源码下载)
前言 leaflet 入门开发系列环境知识点了解: leaflet api文档介绍,详细介绍 leaflet 每个类的函数以及属性等等 leaflet 在线例子 leaflet 插件,leaflet ...
- ELK学习001:Elastic Stack简介
ELK简介: ELK Stack:ELK是Elasticsearch.Logstash.Kibana的缩写简称,这三者都是开源软件.ELK是5.0版本前的统称:这是一套统一的日志收集分析系统.它能够方 ...
- Webdriver启动Firefox浏览器后,页面显示空白
在使用pycharm码代码时编译总是出错,后来验证发现浏览器启动后出现问题.白白耗了我2个小时.我把我的解决方案写出来,希望对大家有帮助. 1.现象:起初安装的时候总是能正常运行,有一天突然发现Web ...
- 字节码操作、javassist使用
一.功能 1.动态生成新的类 2.动态改变某个类的结构(添加.删除.修改 新的属性.方法) 二.优势 1.比反射开销小,性能高 2.JAVAasist性能高于反射,低于ASM 使用javassis ...
- Bellman-ford算法 无向图
// 单源最短路问题 // Bellman-Ford算法 // 复杂度O(V*E) //! 可以判断负圈 #include <cstdio> #include <iostream&g ...
- 简单的说说tippyjs的使用
我们会接触到很多插件的使用,但是我们该如何的去使用呢,本人建议多学习英语,会对开发很有帮助的 为什么说是多去学习它,接下来我们就来说说: 当你没学习英语看到下面的官网是这样子的 当你会英语了,你就会觉 ...