在AlexNet中LRN 局部响应归一化的理
在AlexNet中LRN 局部响应归一化的理
一、LRN技术介绍:
Local Response Normalization(LRN)技术主要是深度学习训练时的一种提高准确度的技术方法。其中caffe、tensorflow等里面是很常见的方法,其跟激活函数是有区别的,LRN一般是在激活、池化后进行的一种处理方法。LRN归一化技术首次在AlexNet模型中提出这个概念。
AlexNet将LeNet的思想发扬光大,把CNN的基本原理应用到了很深很宽的网络中。AlexNet主要使用到的新技术点如下。
(1)成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过了Sigmoid,成功解决了Sigmoid在网络较深时的梯度弥散问题。虽然ReLU激活函数在很久之前就被提出了,但是直到AlexNet的出现才将其发扬光大。
(2)训练时使用Dropout随机忽略一部分神经元,以避免模型过拟合。Dropout虽有单独的论文论述,但是AlexNet将其实用化,通过实践证实了它的效果。在AlexNet中主要是最后几个全连接层使用了Dropout。
(3)在CNN中使用重叠的最大池化。此前CNN中普遍使用平均池化,AlexNet全部使用最大池化,避免平均池化的模糊化效果。并且AlexNet中提出让步长比池化核的尺寸小,这样池化层的输出之间会有重叠和覆盖,提升了特征的丰富性。
(4)提出了LRN层,对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力。
二、为什么要有局部相应归一化(Local Response Normalization)?
三、LRN计算公式的介绍
Hinton在2012年的Alexnet网络中给出其具体的计算公式如下:
这个公式中的a表示卷积层(包括卷积操作和池化操作)后的输出结果,这个输出结果的结构是一个四维数组[batch,height,width,channel],这里可以简单解释一下,batch就是批次数(每一批为一张图片),height就是图片高度,width就是图片宽度,channel就是通道数可以理解成一批图片中的某一个图片经过卷积操作后输出的神经元个数(或是理解成处理后的图片深度)。ai(x,y)表示在这个输出结构中的一个位置[a,b,c,d],可以理解成在某一张图中的某一个通道下的某个高度和某个宽度位置的点,即第a张图的第d个通道下的高度为b宽度为c的点。论文公式中的N表示通道数(channel)。a,n/2,k,α,β分别表示函数中的input,depth_radius,bias,alpha,beta,其中n/2,k,α,β都是自定义的,特别注意一下∑叠加的方向是沿着通道方向的,即每个点值的平方和是沿着a中的第3维channel方向的,也就是一个点同方向的前面n/2个通道(最小为第0个通道)和后n/2个通道(最大为第d-1个通道)的点的平方和(共n+1个点)。而函数的英文注解中也说明了把input当成是d个3维的矩阵,说白了就是把input的通道数当作3维矩阵的个数,叠加的方向也是在通道方向。
公式看上去比较复杂,但理解起来非常简单。i表示第i个核在位置(x,y)运用激活函数ReLU后的输出,n是同一位置上临近的kernal map的数目,N是kernal的总数。参数K,n,alpha,belta都是超参数,一般设置k=2,n=5,aloha=1*e-4,beta=0.75。
整理参考文章:
在AlexNet中LRN 局部响应归一化的理的更多相关文章
- 深度学习原理与框架-Tensorflow卷积神经网络-cifar10图片分类(代码) 1.tf.nn.lrn(局部响应归一化操作) 2.random.sample(在列表中随机选值) 3.tf.one_hot(对标签进行one_hot编码)
1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数 ...
- 局部响应归一化(Local Response Normalization,LRN)
版权声明:本文为博主原创文章,欢迎转载,注明地址. https://blog.csdn.net/program_developer/article/details/79430119 一.LRN技术介 ...
- Fragment中onActivityResult不响应
开发中遇到Fragment中onActivityResult不响应的问题,曾经见过. 不少同学说处理方法是在与Fragment绑定的FragmentActivity中重写onActivityResul ...
- theano 实现图像局部对比度归一化
很多时候我们需要对图像进行局部对比度归一化,比如分块CNN的预处理阶段.theano对此提供了一些比较方便的操作. 局部归一化的一种简单形式为: 其中μ和σ分别为局部(例如3x3的小块)的均值和标准差 ...
- OpenCV中Mat的列向量归一化
OpenCV中Mat的列向量归一化 http://blog.csdn.net/shaoxiaohu1/article/details/8287528 OpenCV中Mat的列向量归一化 标签: Ope ...
- “全栈2019”Java第九十七章:在方法中访问局部内部类成员详解
难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...
- Node+Express中请求和响应对象
在用 Express 构建 Web 服务器时,大部分工作都是从请求对象开始,到响应对象终止. url的组成: 协议协议确定如何传输请求.我们主要是处理 http 和 https.其他常见的协议还有 f ...
- GridView在PopWindow中OnItemClick不响应
在安卓4.0系统中,GridView在PopWindow中OnItemClick不响应,但是有按压效果.需要PopWindow的Show时加入这行代码: popupWindow.setFocusabl ...
- 3D场景中的鼠标响应事件
原文:3D场景中的鼠标响应事件 今天要讲的是3D场景中的鼠标响应事件的处理,首先Button的响应是大家熟知的,只要加上一个click事件,然后写一个响应的处理时间就行了.对于二维平面上的一些控件也很 ...
随机推荐
- 数据库MySQL--分页查询
应用场景:当显示的数据一页无法全部显示,则需要分页提交sql请求 语法: select 查询列表 from 表 { (join type)join 表2 on 连接条件 where 筛选条件 g ...
- 一个切图仔的 JS 笔记
1,常用数据操作 Math.round(mum,2);num.toFixed(2);两位数 Math.floor(); 返回不大于的最大整数 Math.ceil(); 则是不小于他的最小整数 Math ...
- [JZOJ3692] 【SRM 611】ElephantDrinking
题目 题目大意 我真的不知道怎么用简短的语言表述出来-- 直接看题目吧-- 正解 假设只有左边和上边延伸过来的,那似乎很好办:设\(f_{i,j}\)表示左上方到\((i,j)\)所形成的矩形中,如果 ...
- 简单的 js手写轮播图
html: <div class="na1"> <div class="pp"> <div class="na ...
- 概率dp——处理分母为0的情况hdu3853
很水的题,但要注意的是必须处理分母为0的情况 #include<bits/stdc++.h> using namespace std; ; ; ],e[maxn][maxn]; int r ...
- Hibernate之Inverse的用法
在多的一端配置Inverse设置为true,来自动管理关系
- SpringCloud网关无法加载权限及IP黑名单白名单
启动springcloud服务注册中心base,再启动网关远程调用base的接口读取权限等数据,控制台出现加载null权限ERROR提示.在远程调用处打断点,先进入代理,找到抛出异常的原因是reque ...
- VS2010-MFC(对话框:向导对话框的创建及显示)
转自:http://www.jizhuomi.com/software/166.html 上一节讲了属性页对话框和相关的两个类CPropertyPage类和CPropertySheet类,对使用属性页 ...
- vue之样式问题
在样式开发过程中,有两个问题比较突出: 全局污染 —— CSS 文件中的选择器是全局生效的,不同文件中的同名选择器,根据 build 后生成文件中的先后顺序,后面的样式会将前面的覆盖: 选择器复杂 — ...
- POJ 2074 /// 判断直线与线段相交 视野盲区
题目大意: 将所有物体抽象成一段横向的线段 给定房子的位置和人行道的位置 接下来给定n个障碍物的位置 位置信息为(x1,x2,y) 即x1-x2的线段 y相同因为是横向的 求最长的能看到整个房子的一段 ...