说实话,这次的初赛比上一次的要简单。

不过还有些变态的题目。


  1. 在一条长度为1 的线段上随机取两个点,则以这两个点为端点的线段的期望

    长度是( )。

    A. 1 / 2

    B. 1 / 3

    C. 2 / 3

    D. 3 / 5

赛场做法

这题,一眼看下去,我就有点懵了。

后来,又想想有关期望的性质,然后……

画出一条线段,平均分成几份,将所有情况求出来,然后算出期望值。

算了两次,第一次分4份,第二次分6分。

结果都是13\frac{1}{3}31​

证明

我在网上翻到一篇有关这个的证明的博客,结果,那博客秀了强大的微积分……

后来,同学告诉我一个比较好理解的证法:

考虑归纳证明

假设现在有一条线段,长度为lll。

利用分治的思想,在中间取个中点,设为MMM。它将线段等分成两段。

设最终得到的线段的端点分别为XXX,YYY。

根据它们的位置,大体上有两种情况:

  1. XXX和YYY在MMM异侧,则XY‾=XM‾+YM‾\overline{XY}=\overline{XM}+\overline{YM}XY=XM+YM。显然,在期望情况下,两者皆为x4\frac{x}{4}4x​,所以,XY‾=x2\overline{XY}=\frac{x}{2}XY=2x​。
  2. XXX和YYY在MMM同侧,则XY‾=x6\overline{XY}=\frac{x}{6}XY=6x​

∴x2+x62=x3\therefore\frac{\frac{x}{2}+\frac{x}{6}}{2}=\frac{x}{3}∴22x​+6x​​=3x​

得证。


  1. 假设一台抽奖机中有红、蓝两色的球,任意时刻按下抽奖按钮,都会等概率

    获得红球或蓝球之一。有足够多的人每人都用这台抽奖机抽奖,假如他们的

    策略均为:抽中蓝球则继续抽球,抽中红球则停止。最后每个人都把自己获

    得的所有球放到一个大箱子里,最终大箱子里的红球与蓝球的比例接近于

    ( )。

    A. 1 : 2

    B. 2 : 1

    C. 1 : 3

    D. 1 : 1

赛场做法&证明

其实这个比较简单。

设蓝球期望为xxx,则x=1+x2x=\frac{1+x}{2}x=21+x​。

解得x=1x=1x=1


方程 a*b = (a or b) * (a and b),在 a,b 都取 [0, 31] 中的整数时,

共有_____组解。(*表示乘法;or 表示按位或运算;and 表示按位与运算)

赛场做法

第一眼看下去,就觉得这一定是一道神仙题。

果然,还真TM是神仙题。

我先考虑了一个情况:

如果a and ba\ and\ ba and b和a or ba\ or \ ba or b中,这两个数由aaa和bbb组成。

那么很显然的是,一定有其中一个是另外一个的子集。

然后乱搞一波,减去重复的,得出454454454。

然后我还觉得有其它的情况,结果想了半天,没有想出来,最后就交了这个答案……

于是莫名切了。

证明

设x=a xor bx=a\ xor\ bx=a xor b

a and b=a+b−x2a\ and\ b=\frac{a+b-x}{2}a and b=2a+b−x​

a or b=a+b+x2a\ or\ b=\frac{a+b+x}{2}a or b=2a+b+x​

∴(a and b)∗(a or b)=(a+b)2−x24\therefore \left(a\ and\ b\right)*\left(a\ or\ b\right)=\frac{\left(a+b\right)^2-x^2}{4}∴(a and b)∗(a or b)=4(a+b)2−x2​

∴a∗b=(a+b)2−x24\therefore a*b=\frac{\left(a+b\right)^2-x^2}{4}∴a∗b=4(a+b)2−x2​

∴(a−b)2=x2\therefore \left(a-b\right)^2=x^2∴(a−b)2=x2

得证。


然后就没有什么别的特别难的题目了。

总结一下:

  1. 期望题分治看看。
  2. 位运算有很多规律,有时候异或很有用。

NOIP2018提高组初赛选讲的更多相关文章

  1. NOIP2018提高组初赛知识点

     (传说,在神秘的初赛中,选手们经常互相爆零以示友好……) 历年真题:ti.luogu.com.cn 以下标题中打*的是我认为的重点内容 一.关于计算机 (一)计算机组成 硬件组成: 1. 控制器(C ...

  2. NOIP2018提高组初赛准备

    NOIP2017提高组初赛错题 一.单项选择题(共15 题,每题1.5 分,共计22.5 分:每题有且仅有一个正确选项) 4. 2017年10月1日是星期日,1949年10月1日是( ). A. 星期 ...

  3. noip2018提高组初赛试题

    一.单项选择题(共 10 题,每题 2 分,共计 20 分: 每题有且仅有一个正确选项) \2. 下列属于解释执行的程序设计语言是( ). A. C B. C++ C. Pascal D. Pytho ...

  4. 几道noip2018提高组初赛的题

    以下做法来均自llj @Nicodafagood 一.单项选择题 7. 在一条长度为 1 的线段上随机取两个点,则以这两个点为端点的线段的期望 长度是( ).A. 1 / 2B. 1 / 3C. 2 ...

  5. NOIP2018提高组初赛游记

    AH省的,好像水军多,走的都比较早(莫非是真·大佬!!) 本人考了71,较去年退步了.(去年还考80多的来着) 题目坑.. 第一.二大题选择 第三题年份,看了试卷标题,第二十二届,算出来后没有这个选项 ...

  6. NOIp2018 提高组初赛试题参考答案

  7. NOIP提高组初赛难题总结

    NOIP提高组初赛难题总结 注:笔者开始写本文章时noip初赛新题型还未公布,故会含有一些比较老的内容,敬请谅解. 约定: 若无特殊说明,本文中未知数均为整数 [表达式] 表示:在表达式成立时它的值为 ...

  8. NOIP2018提高组省一冲奖班模测训练(四)

    NOIP2018提高组省一冲奖班模测训练(四) 这次比赛只AC了第一题,而且花了40多分钟,貌似是A掉第一题里面最晚的 而且还有一个半小时我就放弃了…… 下次即使想不出也要坚持到最后 第二题没思路 第 ...

  9. NOIP2018提高组省一冲奖班模测训练(三)

    NOIP2018提高组省一冲奖班模测训练(三) 自己按照noip的方式考,只在最后一两分钟交了一次 第一题过了,对拍拍到尾. 第二题不会.考试时往组合计数的方向想,推公式,推了一个多小时,大脑爆炸,还 ...

随机推荐

  1. css 苹方字体

    苹方-简 常规体 font-family: PingFangSC-Regular, sans-serif; 苹方-简 极细体 font-family: PingFangSC-Ultralight, s ...

  2. 【JZOJ6367】工厂(factory)

    description 大神 wyp 开了家工厂,工厂有 n 个工人和 p 条流水线. 工厂的工人都是睡神,因此第 i 个工人只会在 si 至 ti 时刻才会工作. 每个工人都会被分派到一条流水线上, ...

  3. thinkphp 模板渲染

    模板定义后就可以渲染模板输出,系统也支持直接渲染内容输出,模板赋值必须在模板渲染之前操作. 大理石平台价格表 渲染模板 渲染模板输出最常用的是使用display方法,调用格式: display('[模 ...

  4. 针对发送网络附件的java方法(使用Apache的jar包调用)

    1.先要在pom.xml文件中引入对应的jar包 <!--添加邮件的网络附件 start--> <dependency> <groupId>org.apache.c ...

  5. Iview+Vue CDN NetMvC 简单demo

    1.引用相关js文件 2.菜单采用静态数据加载 3.效果展示 4.代码下载 https://github.com/sulin888/NetVueAdmin.git

  6. python pywin32学习笔记

    参考博客链接 https://blog.csdn.net/polyhedronx/article/details/81988948 参考博客链接 https://www.cnblogs.com/zha ...

  7. django零散知识点

    后端将对象以对象形式传到前端: from django.core.serializers import serialize def xxx(reqeust): project_list = model ...

  8. 18-3-bind

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. CSRF spring mvc 跨站请求伪造防御(转)

    CSRF CSRF(Cross-site request forgery跨站请求伪造,也被称为“One Click Attack”或者Session Riding,通常缩写为CSRF或者XSRF,是一 ...

  10. mongodb 3.2 yaml 配置详解及范例

    mongodb3.x版本后就是要yaml语法格式的配置文件,下面是yaml配置文件格式如下:官方yaml配置文件选项参考:https://docs.mongodb.org/manual/ ... #c ...