Stern-Brocot Tree、伪.GCD 副本

伪.GCD

问题 1:\(f(a,b,c,n) = \sum_{i=0}^{n} [\frac{ai+b}{c}]\)

  • Case 1: \(a\geq c 或 b\geq c\):\(f(a,b,c,n) = f(a\%c,b\%c,c,n)+(n+1)[\frac{b}{c}] + \frac{n(n+1)}{2}[\frac{a}{c}]\)
  • Case 2: 令 \(m=[\frac{an+b}{c}]\), 有 $f(a,b,c,n) = \sum_{i=0}^{n}\sum_{j=1}^{m}[[\frac{ai+b}{c}] \geq j] = \sum_{i=0}^{n}\sum_{j=0}^{m-1}[[\frac{ai+b}{c}] \geq j+1] = $
  • \(= \sum_{i=0}^{n}\sum_{j=0}^{m-1}[ai > cj+c-b-1]=\sum_{i=0}^{n}\sum_{j=0}^{m-1} m - [\frac{cj+c-b-1}{a}]\)
  • \(= nm - f(c,c-b-1,a,m-1)\)

问题 2:求 \(\frac{a}{b}<\frac{x}{y}<\frac{c}{d}\),的最小正整数解 \(y\).

  • Case 1:

Stern-Brocot Tree

提问:xxxxxx 问题的答案是 \(\frac{p}{q}\) (\(p \leq 10^6, q \leq 10^5\)),怎么二分?

我觉得我可以二分一个实数 ........ 然后 ....... 睡觉。

做法 solve(a,b,c,d) 在 \([\frac{a}{b},\frac{c}{d}]\) 中寻找答案。

  • check 一下 \(\frac{a+c}{b+d}\)。
  • 小了的话,沿着 SB 树向右下方突突突。二分求出极小的 \(k\),使得 \(\frac{a+kc}{b+kd}\) 大于等于正确答案。solve(a,b,a+kc,b+kd)
  • 大了的话,沿着 SB 树向右下方突突突。二分求出极小的 \(k\),使得 \(\frac{ka+c}{kb+d}\) 小于等于正确答案。solve(ka+c,kb+d,c,d)
  • 二分次数是 log 级别的,不会证明。

练习

It's a Mod, Mod, Mod, Mod World

做法

  • \(\sum_{i=1}^{n} pi\%q = \sum_{i=1}^{n}(pi-q[\frac{pi}{q}]) = \frac{pn(n+1)}{2} - q\sum_{i=1}^{n}[\frac{pi}{q}]\)

Rikka with Ants

做法

  • 对于直线 \(y=\frac{a}{b}x\),点 \((x,y)\) 在路径上,那么 \(\frac{y}{x} \leq \frac{a}{b}, \frac{y+1}{x-1}>\frac{a}{b}\)
    化简一下 \(\frac{a(x-1) - b}{b}< y \leq \frac{ax}{b}\)
  • 不妨设 \(\frac{a}{b}<\frac{c}{d}\),那么有 \(\frac{c(x-1)-d}{d} <y \leq \frac{ax}{b}\)
  • \(ans=\sum_{x=1}^{n} [\frac{ax}{b}] - \sum_{x=1}^{n}[\frac{cx-(c+d)}{d}]\)

KM and M

做法

  • 逐位考虑,考虑第 \(b\) 位,我们想知道多少个 \(k\) 使得 \(km\) 在这位上为 1,即 \(km\%(2^b) \geq 2^{b-1}\)。
  • \(ans = \frac{[\sum{km\%2^b}] - [\sum km\%2^{b-1}]}{2^{b-1}}\)

WifiPlanet

太难了

  • 把多边形剖成若干个梯形。
  • 不会剖简单多边形,被搞得自闭了。

probedroids

做法

  • 用「伪.gcd」check 答案
  • SB 树上二分即可。

HDU6624: fraction

题意

给 \(x,p\) 求极小的 \(a\) 使得 \(ax\%p<a\)

做法

  • 只需寻找最小的 \(k\),使得 \(kp \leq ax<kp+a\)。
  • \(\frac{p}{x} \leq \frac{a}{k} < \frac{p}{x-1}\)。

Stern-Brocot Tree、伪.GCD 副本的更多相关文章

  1. Codeforces 842C Ilya And The Tree 树上gcd

    题目链接 题意 给定一棵根为\(1\)的树.定义每个点的美丽值为根节点到它的路径上所有点的\(gcd\)值.但是对于每个点,在计算它的美丽值时,可以将这条路径上某个点的值变为\(0\)来最大化它的美丽 ...

  2. [俺们学校的题]伪.GCD

    GCD 题面: 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 思路: 首先两个数gcd(x,y)=p为质数,那么令x=k1*p,y=k2*p,由于是最 ...

  3. GCD in Swfit 3.0

    这里包括了Queue, Group, Barrier, Semaphore等内容.基本上常用的GCD对象和方法在Swift3.0的改变都囊括其中. 代码在这里:https://github.com/f ...

  4. hdu-3071 Gcd & Lcm game---质因数分解+状态压缩+线段树

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3071 题目大意: 给定一个长度为n的序列m次操作,操作的种类一共有三种 查询 L :查询一个区间的所 ...

  5. 线段树(I tree)

    Codeforces Round #254 (Div. 2)E题这题说的是给了一个一段连续的区间每个区间有一种颜色然后一个彩笔从L画到R每个区间的颜色都发生了 改变然后 在L和R这部分区间里所用的颜色 ...

  6. 数据结构:二叉查找树(C语言实现)

    数据结构:二叉查找树(C语言实现) ►写在前面 关于二叉树的基础知识,请看我的一篇博客:二叉树的链式存储 说明: 二叉排序树或者是一棵空树,或者是具有下列性质的二叉树: 1.若其左子树不空,则左子树上 ...

  7. BZOJ2877 NOI2012魔幻棋盘(二维线段树)

    显然一个序列的gcd=gcd(其差分序列的gcd,序列中第一个数).于是一维情况直接线段树维护差分序列即可. 容易想到将该做法拓展到二维.于是考虑维护二维差分,查询时对差分矩阵求矩形的gcd,再对矩形 ...

  8. 喵哈哈村的魔法考试 Round #20 (Div.2) 题解

    题解: A 喵哈哈村的跳棋比赛 题解:其实我们要理解题意就好了,画画图看看这个题意.x<y,那么就交换:x>y,那么x=x%y. 如果我们经过很多次,或者y<=0了,那么就会无限循环 ...

  9. 【bzoj2877】 Noi2012—魔幻棋盘

    http://www.lydsy.com/JudgeOnline/problem.php?id=2877 (题目链接) 题意 一个${n*m}$的矩阵,维护两个操作:给任意子矩阵${+val}$:问某 ...

随机推荐

  1. hibernate(一对多关系)

    代码   public class Main { public static void main(String[] args) { SessionFactory sty = HibernateUtil ...

  2. Vue的data选项使用注意

    使用组件时,大多数可以传入到Vue构造器中的选项可以在Vue extend()或 Vue.component() 中注册组件时使用,但是有一个重要的前提:data必须是函数 .在 var vm = n ...

  3. linux基本命令vim

    拷贝当前行 yy,拷贝当前行向下的5行  5yy, 并粘贴(p). 删除当前航  dd,删除当前行向下的5行 5dd. 在文件中查找某个单词[命令行下/关键字,回车查找, 输入n 就是查找下一个] 查 ...

  4. luoguP5162 WD与积木

    我怎么这么zz啊.... 法一: 枚举最后一层的方案:没了... 法二: 生成函数:没了. k*F^k(x),就是错位相减. 法三: 我的辣鸡做法:生成函数 求方案数,用的等比数列求和....多项式快 ...

  5. [JZOJ 100025] 棋盘

    题意:求剩余面积. 首先吐槽题号:究竟\(JZOJ\)有多少未公开的题目... 思路: 简单的一批啊... 不知道为啥上午不过下午就过了?? 难道是海螺姑娘光顾我?? 多说了都是灵异故事... 其实就 ...

  6. 谈谈E语言

    基于中国文化底蕴的编程语言,  绝对不是E语言那个样子. 基于中文的编程,必将是计算机届的一次原子爆炸!

  7. Java-javaFx库运用-时钟显示

    JavaFx是开发Java GUI程序的新框架.JavaFX应用可以无缝地在桌面或web浏览器中运行.具有内建的2D.3D动画支持,以及视频和音频的回放功能,可以作为一个应用独立运行或者在浏览器中运行 ...

  8. centos7.2搭建kubernetes1.5.2+dashboard

    一.    简介 近来容器对企业来说已经不是什么陌生的概念,Kubernetes作为Google开源的容器运行平台,受到了大家的热捧.搭建一套完整的kubernetes平台,也成为试用这套平台必须迈过 ...

  9. 3-MySQL高级-事务-命令(2)

    事务命令 表的引擎类型必须是innodb类型才可以使用事务,这是mysql表的默认引擎 查看表的创建语句,可以看到engine=innodb -- 选择数据库 use jing_dong; -- 查看 ...

  10. [POI2011]SMI-Garbage

    题目描述 http://main.edu.pl/en/archive/oi/18/smi The Byteotian Waste Management Company (BWMC) has drast ...