题目描述

输入

输出

样例输入

6 6

8 9 1 13 9 3

1 4 5

2 6 9

1 3 7

2 7 7

1 6 1

2 11 13

样例输出

45

19

21

数据范围

解法

40%暴力即可;

60%分段暴力,对于20%的数据,由于没有x,所以y二进制下,每有一个1,就计算对应位置有多少1就可以了。

100%基于60%的想法,如果y&(1 shl (i-1))有值(y在二进制下的第i位是1),那么就相当于有多少个a在mod(1 shl i)意义下,在[1 shl (i-1)..(1 shl i)-1]这个区间内。

所以把a依次mod(1 shl i)并在第i个桶状树状数组对应数值位置+1。

修改的时候,把原来的a在树状数组上做出的贡献剔除,再加入新的贡献即可。

询问的时候,正如上述所做,当x>0的时候,那么相当于把[1 shl (i-1)..(1 shl i)-1]这个区间整体向做移动成[1 shl (i-1)-x..(1 shl i)-1-x],在计算区间内有多少个数即可。

棘手的是,区间有时候会囊括到负编号,左边界可能为负,右边界也有可能为负;这时候把负边界mod以(1 shl i),在计算答案即可。感性理解:假定负边界值为z,那么x>z,才会导致z-x为负数,将其mod以(1 shl i)得到z’后,z’再加回x,会导致最高位进位,然后在(1 shl i)意义下,最高位进位变为0,x把z’变为0之后,x还能把0加到z。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define ll long long
#define sqr(x) ((x)*(x))
#define ln(x,y) int(log(x)/log(y))
using namespace std;
const char* fin="aP3.in";
const char* fout="aP3.out";
const int inf=0x7fffffff;
const int maxn=100007,maxk=21;
int n,m,i,j,k,o,mo,tmp,tmd,t1,t2,t3;
ll ans;
int a[maxn];
struct ctree{
int data[1<<maxk],limit;
void change(int v,int v1){
v+=2;
for (;v<=limit;v+=v&-v) data[v]+=v1;
}
int getsum(int v){
int k=0;
v+=2;
for (;v;v-=v&-v) k+=data[v];
return k;
}
}c[maxk];
void count(int a,int b){
for (int i=1;i<maxk;i++) c[i].limit=1<<(i+1),c[i].change(a%(1<<i),b);
}
int main(){
scanf("%d%d",&n,&m);
for (i=1;i<=n;i++) {
scanf("%d",&a[i]);
count(a[i],1);
}
for (i=1;i<=n;i++){
scanf("%d",&j);
if (j==1){
scanf("%d%d",&j,&k);
count(a[j],-1);
a[j]=k;
count(a[j],1);
}else{
scanf("%d%d",&j,&k);
ans=0;
for (o=1;o<maxk;o++)
if (k&(1<<(o-1))){
tmp=(1<<o)-1-j;
tmp=(tmp%(1<<o)+(1<<o))%(1<<o);
tmd=(1<<(o-1))-j;
tmd=(tmd%(1<<o)+(1<<o))%(1<<o);
if (tmp>=tmd) ans+=(ll)(c[o].getsum(tmp)-c[o].getsum(tmd-1))*(1<<(o-1));
else{
t1=c[o].getsum(tmp);
t2=c[o].getsum((1<<o)-1);
t3=c[o].getsum(tmd-1);
ans+=(ll)(t1+t2-t3)*(1<<(o-1));
}
}
printf("%lld\n",ans);
}
}
return 0;
}

启发

当十进制与二进制碰撞在一起的时候,尝试把二进制转化为十进制,尤其涉及加减乘除之类的运算时。

【JZOJ4711】【NOIP2016提高A组模拟8.17】Binary的更多相关文章

  1. 【JZOJ4787】【NOIP2016提高A组模拟9.17】数格子

    题目描述 输入 输出 样例输入 1 10000 3 10000 5 10000 0 0 样例输出 1 11 95 数据范围 每个测试点数据组数不超过10组 解法 状态压缩动态规划. 设f[i][j]表 ...

  2. 【NOIP2016提高A组模拟9.17】序列

    题目 分析 首先用\(a_i\)表示达到目标的步数\(B_i-A_i(mod 4)\) 根据粉刷栅栏,先不管mod 4的情况,答案就是\(\sum\max(a_i-a_{i+1},0)\) 那我们刚才 ...

  3. NOIP2016提高A组模拟9.17总结

    第一题,典型的隔板问题, 但是我忘记隔板问题怎么打,一开始在花了1小时,还是没想出来,果断弃疗, 最后的40分钟,我打完了第二题,接着又用了20分钟推敲出一种极其猥琐的式子来代替,可惜预处理的阶乘忘记 ...

  4. 【NOIP2016提高A组模拟9.17】数格子

    题目 分析 设表示每一行的状态,用一个4位的二进制来表示,当前这一行中的每一个位数对下一位有没有影响. 设\(f_{i,s}\)表示,做完了的i行,其状态为s,的方案数. 两个状态之间是否可以转移就留 ...

  5. 【NOIP2016提高A组模拟9.17】小a的强迫症

    题目 分析 题目要求第i种颜色的最后一个珠子要在第i+1种颜色的最后一个珠子之前, 那么我们从小到大枚举做到第i种,把第i种的最后一颗珠子取出,将剩下的\(num(i)-1\)个珠子插入已排好的前i- ...

  6. 【NOIP2016提高A组模拟8.17】(雅礼联考day1)总结

    考的还ok,暴力分很多,但有点意外的错误. 第一题找规律的题目,推了好久.100分 第二题dp,没想到. 第三题树状数组.比赛上打了个分段,准备拿60分,因为时间不够,没有对拍,其中有分段的20分莫名 ...

  7. 【NOIP2016提高A组模拟8.17】(雅礼联考day1)Binary

    题目 分析 首先每个数对\(2^i\)取模.也就是把每个数的第i位以后删去. 把它们放进树状数组里面. 那么当查询操作, 答案就位于区间\([2^i-x,2^{i-1}-1-x]\)中,直接查询就可以 ...

  8. 【NOIP2016提高A组模拟8.17】(雅礼联考day1)Value

    题目 分析 易证,最优的答案一定是按\(w_i\)从小到大放. 我们考虑dp, 先将w从小到大排个序,再设\(f_{i,j}\)表示当前做到第i个物品,已选择了j个物品的最大值.转移就是\[f_{i, ...

  9. 【NOIP2016提高A组模拟8.17】(雅礼联考day1)Matrix

    题目 分析 假设,我们从\(F_{i,2}\)出发,那么对\(F_{n,n}\)的贡献就是\(某个系数乘以a^{n-i}b^{n-1}r_i\): 同理,如果从\(F_{2,i}\)出发,那么对\(F ...

随机推荐

  1. 12_PCA之探究用户对物品类别的喜好细分降维

    案例: 探究:用户对物品类别的喜好细分降维. 背景:把用户分成几个类别,分类的依据是用户购买了哪些物品. 先看商品products.csv数据,有product_id,product_name,ais ...

  2. .Net Core微服务系列--服务发现

    什么是服务发现 首先我们先思考一个问题,当我们在浏览器中输入一个域名比如baidu.com,然后发生了什么才能让我们访问到百度的网页?简单来说,浏览器会首先从主机的hosts文件中查看是否有baidu ...

  3. vue 引入css及注意事项

    组件中: <style scoped> @import '../../static/css/xx.css'; // “ :”必须有 </style> 注:若用以下方法,全部组件 ...

  4. Luogu P3835 【模板】可持久化平衡树(fhq Treap)

    P3835 [模板]可持久化平衡树 题意 题目背景 本题为题目普通平衡树的可持久化加强版. 题目描述 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作(对于各个以往的历史版本 ...

  5. Leetcode961. N-Repeated Element in Size 2N Array重复N次的元素

    在大小为 2N 的数组 A 中有 N+1 个不同的元素,其中有一个元素重复了 N 次. 返回重复了 N 次的那个元素. 示例 1: 输入:[1,2,3,3] 输出:3 示例 2: 输入:[2,1,2, ...

  6. 玩转xargs

    xargs命令可以把标准输入数据转换成命令行参数.也可以将单行或多行文本输入转换成其他格式,是构建单行命令的重要组件之一. xargs命令应该紧跟在管道操作符之后,以stdin作为主要的源数据流,使用 ...

  7. 使用 top instance 命令查看运行中 MaxCompute 作业

    我们都知道,在 MaxCompute Console 里,可以使用下面的命令来列出运行完成的 instance 列表. show p|proc|processlist [from <yyyy-M ...

  8. html的常用标签详解1

    1.<!DOCTYPE html> 文档声明,不算是标签,但是它可是不能少.这玩意是干什么用的呢? 它是向浏览器自报家门的,即告诉浏览器的解析器应该以什么样的文档类型定义(DTD)来解析它 ...

  9. 微信小程序上传图片(附后端代码)

    几乎每个程序都需要用到图片. 在小程序中我们可以通过image组件显示图片. 当然小程序也是可以上传图片的,微信小程序文档也写的很清楚. 上传图片 首先选择图片 通过wx.chooseImage(OB ...

  10. [转]C#接收邮件

    最近由于工作需要,接触到了邮件服务器.以前我用CF写过,感觉没有什么,我想用C#来实现会更简单,但是万万没想到C#没有提供邮件接收的方法,令我很不解.通过我在网上查找,发现了一个国外公司写好的接收邮件 ...