• 问题描述:

    斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

    F(0) = 0,   F(1) = 1
    F(N) = F(N - 1) + F(N - 2), 其中 N > 1.

    给定 N,计算 F(N)。

    示例 :

    输入:2
    输出:1
    解释:F(2) = F(1) + F(0) = 1 + 0 = 1.
  • 问题分析:

    由于计算任何一个第n(n >= 2)项的数都需要知道其前面两个数,即需要知道n-1和n-2是多少,然后两个相加得到结果,但是问题来了,要知道n-1,就要需要知道n-2,要知道n-2就需要知道n-3,会一直这样的循环递归下去,一直到第一个数,第二个,第三个.......再反推回来。 那就很明显了,大家第一时间想到的方法便是递归,就下来实现一下:

    方法一:递归实现

    public class Solution {
    public int fib(int n) {
    if(n <= 1){
    return n;
    }
    return fib(n-1) + fib(n-2);
    }
    }

​ 问题分析:

​ 先看一下递归图:

​ 由于很多数的计算都要重复很多次,效率并不高,时间复杂度达到了 O(2^n),是斐波那契数计算中 时间复杂度最大,最不可取的方法。

​ 空间复杂度:O(n),堆栈中需要的空间与 N 成正比,堆栈会跟踪 fib(n) 的调用,随着堆栈的不断增长 如果没有足够的内存则会出现StackOverflowError异常。

​ 注:定义为int型时,最大只能求到n = 46,f(46) = 1836311903, 而 f(47) = -1323752223,因为超出了int 型数值的最大范围。

  • 算法改进:

    使用递归的同时,使用记忆化方式存储已经计算过的数据,减少不必要的重复计算,可以使时间复杂度降到 O(N),同时空间复杂度也是O(N)。具体的实现是使用一个数组,把每次计算过的值都存储进去,当再次使用这个数的时候,直接返回,不需要再进行递归。

    方法二:记忆化自底向上递归

    public class Solution {
    public int fib(int n) {
    if(n <= 1){
    return n;
    }
    int[] memo = new int[n+1];
    memo[1] = 1;
    for(int i = 2;i <= n; i++){
    //自底向上填充数组,一直到需要的那个数
    memo[i] = memo[i-1] + memo[i-2];
    }
    return memo[n];
    }
    }

方法三:使用第三方变量

class Solution {
public int fib(int N) {
if (N < 2) return N;
if (N == 2) return 1; int temp = 1;
int result = 1;
for (int i = 3; i <= N ; i++) {
result= temp + result;
temp = result - temp;
}
return result;
}
}

时间复杂度瞬间降到O(1),这个我觉得应该是三个方法里面最简单最高效的。


  • 最后:

    限于水平有限,斐波那契数的实现还有很多种方法,不能一一列举,当其中大部分都有类似的思想。

    水文中如有不准确或是错误之处,还望指出。谢谢~~~

    下一篇:LeetCode.62——不同路径

LeetCode.509——斐波那契数的更多相关文章

  1. Java实现 LeetCode 509 斐波那契数

    509. 斐波那契数 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 ...

  2. leetcode 509. 斐波那契数

    问题描述 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0,   F(1) = 1 F(N) ...

  3. 力扣(LeetCode) 509. 斐波那契数

    斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) = F(N ...

  4. 【LeetCode】509. 斐波那契数

    题目 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0,   F(1) = 1 F(N) = ...

  5. leetcode 509斐波那契数列

    递归方法: 时间O(2^n),空间O(logn) class Solution { public: int fib(int N) { ?N:fib(N-)+fib(N-); } }; 递归+记忆化搜索 ...

  6. LeetCode_509.斐波那契数

    LeetCode-cn_509 509.斐波那契数 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) ...

  7. LeetCode(509. 斐波那数)

    问题描述: 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) ...

  8. [Swift]LeetCode509. 斐波那契数 | Fibonacci Number

    The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such th ...

  9. UVA 11582 Colossal Fibonacci Numbers! 大斐波那契数

    大致题意:输入两个非负整数a,b和正整数n.计算f(a^b)%n.其中f[0]=f[1]=1, f[i+2]=f[i+1]+f[i]. 即计算大斐波那契数再取模. 一开始看到大斐波那契数,就想到了矩阵 ...

随机推荐

  1. CF1277A. Happy Birthday, Polycarp! 题解 枚举/数位DP

    题目链接:http://codeforces.com/contest/1277/problem/A 题目大意: 求区间 \([1,n]\) 范围内有多少只包含一个数字的数. 比如:\(1,77,777 ...

  2. HDU5521 Meeting 题解 最短路

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5521 题目大意: 有 \(n\) 个点 \(m\) 个集合,一个点可能处于若干个集合内,属于第 \(i ...

  3. Ceph 文件系统 CephFS 的实战配置,等你来学习 -- <4>

    Ceph 文件系统 CephFS 的介绍与配置 CephFs介绍 Ceph File System (CephFS) 是与 POSIX 标准兼容的文件系统, 能够提供对 Ceph 存储集群上的文件访问 ...

  4. 前端面试基础回顾之深入JS继承

    前言 对于灵活的js而言,继承相比于java等语言,继承实现方式可谓百花齐放.方式的多样就意味着知识点繁多,当然也是面试时绕不开的点.撇开ES6 class不谈,传统的继承方式你知道几种?每种实现原理 ...

  5. 6.python在windows下用批处理文件在运行中输入程序名直接运行的方法

    最近由于平时自由时间比较多,在看一本python入门书籍,在里面学习了一种用windows下的批处理文件在电脑运行界面中直接输入程序名称就可运行的方法,现将其详细说明如下: 1.首先编写一个教程上的程 ...

  6. 类加载器在Tomcat中的应用

    之前有文章已经介绍过了JVM中的类加载机制,JVM中通过类加载加载class文件,通过双亲委派模型完成分层加载.实际上类加载机制并不仅仅是在JVM中得以运用,通过影响字节码生成和类加载器目前已经有了许 ...

  7. Go Web 编程之 模板(一)

    概述 模板引擎是 Web 编程中必不可少的一个组件.模板能分离逻辑和数据,使得逻辑简洁清晰,并且模板可复用.引用第二篇文章<程序结构>一文中的图示,我们可以看到模板引擎在 Web 程序结构 ...

  8. Spring循环依赖的解决

    ## Spring循环依赖的解决 ### 什么是循环依赖 循环依赖,是依赖关系形成了一个圆环.比如:A对象有一个属性B,那么这时候我们称之为A依赖B,如果这时候B对象里面有一个属性A.那么这时候A和B ...

  9. Beetlex实现完整的HTTP协议

    在传统网络服务中扩展中需要处理Bytes来进行协议的读写,这种原始的处理方式让工作变得相当繁琐复杂,出错和调试的工作量都非常大:组件为了解决这一问题引用Stream读写方式,这种方式可以极大的简化网络 ...

  10. java 支持分词的高性能拼音转换工具,速度是 pinyin4j 的两倍

    pinyin pinyin 是 java 实现的高性能中文拼音转换工具. 变更日志 创作目的 想为 java 设计一款便捷易用的拼音工具. 如何为 java 设计一款高性能的拼音转换工具 pinyin ...