组合数学起步-排列计数[ZJOI2010][BZOJ2111]
所以就是小根堆了:小根堆的形态不变,只要找填数的方案,
那么这里如何做呢?
对于每一个叶子节点和唯一值,只有一种方案
然后对于根节点,比根大的数作为叶节点,只要分成两部分就可以
但是如何分也不必要记录,只要记录方案数
由于是分步求解,
所以要把每个子树上的方法与本次分的方法相乘。
式子:$dp[i]=C_{siz[i]-1}^{siz[2*i]}*dp[i*2]*dp[i*2+1]$其中$siz[i]$是以$i$为根的树节点数
于是就可以得到结果$dp[1]$
当然要从$n$跑到$1$了
下面是另一部分
$C_n^m\%p$怎么求?
卢卡斯定理,p一定要是素数。
具体证明和代码见这里
蒟蒻不会了~~
然后里面的细节就是,求阶乘及其逆元,可以打表,现求逆元也可以。
用 $a^{p-2}$ 的快速幂求逆元
#include <iostream>
#include <cstdio>
#include <algorithm>
#define N 2000100
#define LL long long
using namespace std;
LL p,n;
int siz[N];
LL fac[N],inv[N],dp[N];
LL ppow(LL a,LL b){
LL k=;
while(b){
if(b&)k=k*a%p;
a=a*a%p;
b>>=;
}
return k;
}
void prerun(){
for (int i=n;i>=;i--){
siz[i]=siz[i*]+siz[i*+]+;
}
fac[]=;
for (int i=;i<=n;i++){
fac[i]=fac[i-]*i%p;
}
}
LL C(LL m,LL n){
if(n<m)return ;
return fac[n]*ppow(fac[m],p-)%p*ppow(fac[n-m],p-)%p;
}
LL lucas(LL m,LL n){
if(m==)return ;
return lucas(m/p,n/p)*C(m%p,n%p)%p;
}
int main (){
scanf("%lld%lld",&n,&p);
prerun();
for (int i=n;i>=;i--){
dp[i]=lucas(siz[i*],siz[i]-);
if(i*<=n)dp[i]=dp[i]*dp[i*]%p;
if(i*+<=n)dp[i]=dp[i]*dp[i*+]%p;
}
printf("%lld\n",dp[]);
return ;
}
真不知道没有题解怎么活~~
主要参考:Rorschach_XR的[ZJOI2010]排列计数 题解
组合数学起步-排列计数[ZJOI2010][BZOJ2111]的更多相关文章
- 【BZOJ2111】[ZJOI2010]排列计数(组合数学)
[BZOJ2111][ZJOI2010]排列计数(组合数学) 题面 BZOJ 洛谷 题解 就是今年九省联考\(D1T2\)的弱化版? 直接递归组合数算就好了. 注意一下模数可以小于\(n\),所以要存 ...
- 【BZOJ2111】[ZJOI2010]Perm 排列计数 组合数
[BZOJ2111][ZJOI2010]Perm 排列计数 Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi> ...
- BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]
2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1936 Solved: 477[Submit][ ...
- BZOJ_4517_[Sdoi2016]排列计数_组合数学
BZOJ_4517_[Sdoi2016]排列计数_组合数学 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[ ...
- 2111: [ZJOI2010]Perm 排列计数
2111: [ZJOI2010]Perm 排列计数 链接 题意: 称一个1,2,...,N的排列$P_1,P_2...,P_n$是Magic的,当且仅当$2<=i<=N$时,$P_i> ...
- bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)
bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: ...
- [ZJOI2010]排列计数 (组合计数/dp)
[ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...
- 洛谷 P2606 [ZJOI2010]排列计数 解题报告
P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...
- P2606 [ZJOI2010]排列计数
P2606 [ZJOI2010]排列计数 因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树.现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质. 设\(f(i)\)表示以\ ...
随机推荐
- ListControl 设置表格行高与字体
设置行高: CImageList m_l; m_l.Create(1,18,TRUE|ILC_COLOR32,1,0); listCtrl.SetImageList(&m_l,LVS ...
- 16进制与utf-8
很多人将数据的存储.传输方式和展现形式混为一谈. 类似的16进制 2进制是讲内容在电脑里面的存储或者传输的一种格式, 而utf-8 gb2312 等是输出的展现的一种格式 不是一回事,另外 gbk包含 ...
- 记mysql 启动不了了的解决方法
系统: centos7 本地的环境,mysql启动不了,查看 /var/log/mysqld.log 有以下内容 2018-12-24T08:05:38.090527Z 0 [Warning] TIM ...
- 有关阿里云对SaaS行业的思考,看这一篇就够了
过去二十年,随着改革开放的深化,以及中国的人口红利等因素,中国诞生了大批To C的高市值互联网巨头,2C的领域高速发展,而2B领域一直不温不火.近两年来,在C端流量饱和,B端数字化转型来临的背景下,中 ...
- 【Uva 12128】Perfect Service
[Link]: [Description] 给你n个机器组成的一棵树,然后,让你在某些机器上安装服务器. 要求,每个机器如果没有安装服务器,都要恰好和一个安装了服务器的机器连接. 问你,最少要安装多少 ...
- 「BZOJ2388」旅行规划
传送门 分块+凸包 求出前缀和数组s 对于l~r加上k,相当于s[l]~s[r]加上一个首项为k,公差为k的等差数列.r~n加上k*(r-l+1). 分块之后对每一块维护两个标记,一个记录它加的等差数 ...
- TmodJs:常用语法
ylbtech-TmodJs:常用语法 1.返回顶部 1.循环 {{each items as item index}} <tr> <td>{{index+1}}</td ...
- 模板——Treap
不得不说平衡树博大精深,除了Treap,还有splay,非旋Treap和可持久化数据结构,今天先讲讲Treap,也很感谢这位大佬的博客给予我帮助:http://www.360doc.com/conte ...
- php面向对象成员方法(函数)练习
<?php header('content-type:text/html;charset=utf-8'); //成员方法的举例 /* ①添加sayHello 成员方法,输出 'hello' ②添 ...
- java基础温习 -- Thread
启动线程两种方式: 1. 实现Runnable接口: 2. 继承Thread类. 选用:能使用接口,就不用从Thread类继承. 使用继承的方法不够灵活,从这个类继承了就不能从其他类继承: 实现 ...