MATLAB用“fitgmdist”函数拟合高斯混合模型(一维数据)

作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

MATLAB中“fitgmdist”的用法及其GMM聚类算法中介绍过"fitgmdist"函数的用法,这次用"fitgmdist"拟合一维数据。

1. 一维高斯混合数据的产生

function data=generate_GMM()
%前两列是数据,最后一列是类标签
%数据规模
N=300;
%数据维度
% dim=1;
%%
%混合比例
para_pi=[0.3 0.2 0.5];
%第一类数据
mul=0; % 均值
S1=1; % 协方差
data1=mvnrnd(mul, S1, para_pi(1)*N); % 产生高斯分布数据
%第二类数据
mu2=4;
S2=2;
data2=mvnrnd(mu2,S2,para_pi(2)*N);
%第三类数据
mu3=-4;
S3=1;
data3=mvnrnd(mu3,S3,para_pi(3)*N);
data = [data1, ones(para_pi(1)*N,1); data2, 2*ones(para_pi(2)*N,1); data3, 3*ones(para_pi(3)*N,1)];
save data_gauss data

2. 拟合高斯混合模型

load data_gauss
data=data(:,1);
K=3;
gmm=fitgmdist(data, K);
% 自定义参数
% RegularizationValue=0.001; %正则化系数,协方差矩阵求逆
% MaxIter=1000; %最大迭代次数
% TolFun=1e-8; %终止条件
% gmm=fitgmdist(data, K, 'RegularizationValue', RegularizationValue, 'CovarianceType', 'diagonal', 'Start', 'plus', 'Options', statset('Display', 'final', 'MaxIter', MaxIter, 'TolFun', TolFun));
[N, D]=size(data);
mu=gmm.mu; %均值
Sigma=gmm.Sigma; %协方差矩阵
ComponentProportion=gmm.ComponentProportion; %混合比例
Y=zeros(N, K);
for k=1:K
Y(:,k)=ComponentProportion(k).*normpdf(data, mu(k), Sigma(:,:,k));
end
YY=sum(Y, 2);
plot(data,YY,'r.')

3. 结果

4. 参考

[1] MATLAB高斯混合数据的生成

[2] MATLAB中“fitgmdist”的用法及其GMM聚类算法

MATLAB用“fitgmdist”函数拟合高斯混合模型(一维数据)的更多相关文章

  1. 高斯混合模型(GMM)及MATLAB代码

    之前在学习中遇到高斯混合模型,卡了很长一段时间,在这里记下学习中的一些问题以及解决的方法.希望看到这篇文章的同学们对高斯混合模型能有一些基本的概念.全文不废话,直接上重点. 本文将从以下三个问题详解高 ...

  2. CS229 Lesson 13 高斯混合模型

    课程视频地址:http://open.163.com/special/opencourse/machinelearning.html 课程主页:http://cs229.stanford.edu/ 更 ...

  3. matlab函数拟合

    1 函数拟合 函数拟合在工程(如采样校正)和数据分析(如隶属函数确定)中都是非常有用的工具.我这里将函数拟合分为三类:分别是多项式拟合,已知函数类型的拟合和未知函数类型的拟合.matlab中关于函数的 ...

  4. matlab多项式拟合以及指定函数拟合

    clc;clear all;close all;%% 多项式拟合指令:% X = [1 2 3 4 5 6 7 8 9 ];% Y = [9 7 6 3 -1 2 5 7 20]; % P= poly ...

  5. 高斯混合模型(GMM)

    复习: 1.概率密度函数,密度函数,概率分布函数和累计分布函数 概率密度函数一般以大写“PDF”(Probability Density Function),也称概率分布函数,有的时候又简称概率分布函 ...

  6. MATLAB中“fitgmdist”的用法及其GMM聚类算法

    MATLAB中“fitgmdist”的用法及其GMM聚类算法 作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 高斯混合模型的基本原理:聚类——GMM,MA ...

  7. 高斯混合模型(理论+opencv实现)

    查资料的时候看了一个不文明的事情,转载别人的东西而不标注出处,结果原创无人知晓,转载很多人评论~~标注了转载而不说出处这样的人有点可耻! 写在前面: Gaussian Mixture Model (G ...

  8. 聚类之高斯混合模型(Gaussian Mixture Model)【转】

    k-means应该是原来级别的聚类方法了,这整理下一个使用后验概率准确评测其精度的方法—高斯混合模型. 我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussia ...

  9. SIGAI机器学习第二十三集 高斯混合模型与EM算法

    讲授高斯混合模型的基本概念,训练算法面临的问题,EM算法的核心思想,算法的实现,实际应用. 大纲: 高斯混合模型简介实际例子训练算法面临的困难EM算法应用-视频背景建模总结 高斯混合模型简写GMM,期 ...

随机推荐

  1. Jedis客户端即redis中的pipeline批量操作

    关注公众号:CoderBuff,回复"redis"获取<Redis5.x入门教程>完整版PDF. <Redis5.x入门教程>目录 第一章 · 准备工作 第 ...

  2. H5页面长按复制功能实现

    手机赚钱怎么赚,给大家推荐一个手机赚钱APP汇总平台:手指乐(http://www.szhile.com/),辛苦搬砖之余用闲余时间动动手指,就可以日赚数百元 默认情况下禁止了长按复制功能,要此功能需 ...

  3. NCE L6

  4. Shiro -- (二) 身份验证基本流程

    简介: 在 shiro 中,用户需要提供 principals (身份)和 credentials(证明)给 shiro,从而应用能验证用户身份: principals:身份,即主体的标识属性,可以是 ...

  5. redis 5.0.7 源码阅读——压缩列表ziplist

    redis中压缩列表ziplist相关的文件为:ziplist.h与ziplist.c 压缩列表是redis专门开发出来为了节约内存的内存编码数据结构.源码中关于压缩列表介绍的注释也写得比较详细. 一 ...

  6. 第10章 DOM

    第10章 DOM 10.1 节点层次 10.1.1 Node 类型 10.1.2 Document 类型 10.1.3 Element 类型 10.1.4 Text 类型 10.1.5 Comment ...

  7. .net core 中如何运用 appsettings.json 进行配置开发、生产不同配置

    .net core 默认会有 appsettings.Development.json 文件,这是根据ASPNETCORE_ENVIRONMENT来读取的. 新建架构appsettings.Produ ...

  8. 就不能换DB吗? 抽象工厂模式

    15.1 就不能换DB吗? 15.2 最基本的数据访问程序 namespace 抽象工厂模式 { class Program { static void Main(string[] args) { U ...

  9. [SDOI2018]反回文串

    题意 问有多少个长度为\(N\)且字符集大小为\(K\)的字符串可以通过回文串旋转 (把第一个字符移到最后)若干次得到.\(K\le N≤10^{18}\) 做法 ARC64F的加强版 设\(h(d) ...

  10. 查看mysql是否锁表了

    1.查看表是否被锁: (1)直接在mysql命令行执行:show engine innodb status\G. (2)查看造成死锁的sql语句,分析索引情况,然后优化sql. (3)然后show p ...