人生苦短,我用 Python

前文传送门:

小白学 Python 数据分析(1):数据分析基础

小白学 Python 数据分析(2):Pandas (一)概述

小白学 Python 数据分析(3):Pandas (二)数据结构 Series

小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame

小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据

引言

上一篇文章我们介绍如何在 Pandas 一些基础的查看数据的操作,但是官方更推荐我们使用 .at.iat.loc.iloc 这几个经过 Pandas 优化过的数据访问方法来访问数据。

首先我们还是先创建一个 DataFrame 用作演示,小编偷懒,接着把上一篇的 DataFrame 拷贝过来了,如下:

import numpy as np
import pandas as pd dates = pd.date_range('20200101', periods=6)
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
print(df)

DataFrame 是由很多列组成的,其实可以看做是由多个 Series 组成,我们可以单独获取一列直接获得一个 Series ,如下:

# 获取单列,获得 Series
print(df['A']) # 输出结果
2020-01-01 -0.065477
2020-01-02 -1.089716
2020-01-03 0.049215
2020-01-04 -0.017615
2020-01-05 -0.910402
2020-01-06 -0.008887
Freq: D, Name: A, dtype: float64

接下来我们可以通过 [] 对 DataFrame 进行切片操作,示例如下:

# 行切片
print(df[0:3])
print(df['20200101' : '20200103']) # 输出结果
A B C D
2020-01-01 -0.065477 1.603827 1.152969 0.742842
2020-01-02 -1.089716 -0.540936 0.456917 0.295272
2020-01-03 0.049215 -1.182454 -0.294177 -0.698877
A B C D
2020-01-01 -0.065477 1.603827 1.152969 0.742842
2020-01-02 -1.089716 -0.540936 0.456917 0.295272
2020-01-03 0.049215 -1.182454 -0.294177 -0.698877

可以看到,我们通过整数或者是 columns 将 DataFrame 进行了行切片。

loc

我们可以通过使用 loc 进行 column 名和 index 名定位。

比如我们通过 column 提取出一行数据,如下:

# 用标签提取一行数据
print(df.loc[dates[0]]) # 输出结果
A -0.065477
B 1.603827
C 1.152969
D 0.742842
Name: 2020-01-01 00:00:00, dtype: float64

注意,这里的 dates 是我们在最前面生成的一个数组,这里的写法同样可以替换成 df.loc['20200101']

同样我们可以通过切片的方式获取指定某几行的数据,如下:

# 用标签提取多列数据
print(df.loc[:, ['A', 'B']]) # 输出结果
A B
2020-01-01 -0.065477 1.603827
2020-01-02 -1.089716 -0.540936
2020-01-03 0.049215 -1.182454
2020-01-04 -0.017615 -0.777637
2020-01-05 -0.910402 -0.173959
2020-01-06 -0.008887 0.525035 # 用标签进行切片操作,同时制定行与列的结束点
print(df.loc['20200101':'20200103', ['A', 'B']]) # 输出结果
A B
2020-01-01 -0.065477 1.603827
2020-01-02 -1.089716 -0.540936
2020-01-03 0.049215 -1.182454 # 返回一行中的两列
print(df.loc['20200101', ['A', 'B']]) # 输出结果
A -0.065477
B 1.603827
Name: 2020-01-01 00:00:00, dtype: float64

那么我如果想获得一个指定位置的数据怎么办呢?当我们把 DataFrame 想像成为一个坐标系的时候,当然是指定横纵坐标可以确定一个唯一的点啊,如下:

# 获取某个标量值
print(df.loc[dates[0], 'A']) # 输出结果
-0.06547653622759132

iloc

iloc 和上面的 loc 很像, loc 主要是通过行进行索引定位,而 iloc 是通过 index 也就是列进行索引定位,所以参数是整型, iloc 的英文全称为 index locate 。

先看一个简单的示例,我们先用整数选择出其中的一列:

# 用整数位置选择
print(df.iloc[3]) # 输出结果
A -0.017615
B -0.777637
C 0.824364
D 0.210244
Name: 2020-01-04 00:00:00, dtype: float64

这里我们还可以加上切片进行选择:

# 使用整数按行和列进行切片操作
print(df.iloc[3:5, 0:2]) # 输出结果
A B
2020-01-04 -0.017615 -0.777637
2020-01-05 -0.910402 -0.173959 # 用整数列表按位置切片
print(df.iloc[[1, 2, 4], [0, 2]]) # 输出结果
A C
2020-01-02 -1.089716 0.456917
2020-01-03 0.049215 -0.294177
2020-01-05 -0.910402 -1.140222 # 整行切片
print(df.iloc[1:3, :]) # 输出结果
A B C D
2020-01-02 -1.089716 -0.540936 0.456917 0.295272
2020-01-03 0.049215 -1.182454 -0.294177 -0.698877 # 整列切片
print(df.iloc[:, 1:3]) # 输出结果
B C
2020-01-01 1.603827 1.152969
2020-01-02 -0.540936 0.456917
2020-01-03 -1.182454 -0.294177
2020-01-04 -0.777637 0.824364
2020-01-05 -0.173959 -1.140222
2020-01-06 0.525035 -1.076101

同样,我们通过 iloc 也可以直接选择一个标量值:

# 获取某个标量值 同上
print(df.iloc[1, 1]) # 结果如下
-0.540936460611594

at 和 iat

at 和 iat 都是用来访问单个元素的,而且他们的访问速度要快于上面的 loc 和 iloc 。

at 使用方法与 loc 类似,示例如下:

print(df.at[dates[0], 'A'])

# 输出结果
-0.06547653622759132

iat 对于 iloc 的关系就像 at 对于 loc 的关系,示例如下:

print(df.iat[1, 1])

# 输出结果
-0.540936460611594

其他

我们还可以使用一些判断条件来选择数据,如用单列的值选择数据,示例如下:

print(df[df.A > 0])

# 输出结果
A B C D
2020-01-03 0.049215 -1.182454 -0.294177 -0.698877

上面这个示例是输出的所有 A 列大于 0 的数据。

还有直接使用整个 df 做判断的,示例如下:

print(df[df < 0])

# 输出结果
A B C D
2020-01-01 -0.065477 NaN NaN NaN
2020-01-02 -1.089716 -0.540936 NaN NaN
2020-01-03 NaN -1.182454 -0.294177 -0.698877
2020-01-04 -0.017615 -0.777637 NaN NaN
2020-01-05 -0.910402 -0.173959 -1.140222 -0.662615
2020-01-06 -0.008887 NaN -1.076101 -0.862407

示例代码

老规矩,所有的示例代码都会上传至代码管理仓库 Github 和 Gitee 上,方便大家取用。

示例代码-Github

示例代码-Gitee

参考

https://www.pypandas.cn/docs/getting_started/10min.html

小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择的更多相关文章

  1. Python数据分析之pandas学习(基础操作)

    一.pandas数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Series类似于numpy中的一维数组,除了通吃一维数组可用的函数或方法,而且其 ...

  2. 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据

    在家为国家做贡献太无聊,不如跟我一起学点 Python 人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Panda ...

  3. 小白学 Python 数据分析(7):Pandas (六)数据导入

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

  4. 小白学 Python 数据分析(8):Pandas (七)数据预处理

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

  5. 小白学 Python 数据分析(9):Pandas (八)数据预处理(2)

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

  6. 小白学 Python 数据分析(10):Pandas (九)数据运算

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

  7. 小白学 Python 数据分析(11):Pandas (十)数据分组

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

  8. 小白学 Python 数据分析(12):Pandas (十一)数据透视表(pivot_table)

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

  9. 小白学 Python 数据分析(13):Pandas (十二)数据表拼接

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

随机推荐

  1. postman传递当前时间戳

    有时我们在请求接口时,需要带上当前时间戳这种动态参数,那么postman能不能自动的填充上呢. 1请求动态参数(例如时间戳) 直接在参数值写 {{$timestamp}} 如下: 我们也可以使用pos ...

  2. Office系列(1)---将Office文件(Word、PPT、Excel)转换为PDF文件

    需求: 将Office文件作为文章并在网页上预览,主要为(Word.PPT.Excel)3种类型文件. 研究了一下,找到了两种解决方案 直接调用微软的在线预览功能实现(预览前提:预览资源必须可以直接通 ...

  3. 字符串转hash进阶版

    #include<bits/stdc++.h> using namespace std; ,mod=; vector<unsigned> H[mod]; void Add(un ...

  4. cf - 920 c 求能否实现交换

    C. Swap Adjacent Elements time limit per test 1 second memory limit per test 256 megabytes input sta ...

  5. hdu4417 主席树求区间小于等于K

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4417   Problem Description Mario is world-famous plum ...

  6. Ansible Playbooks常用模块

    File模块 在目标主机创建文件或目录,并赋予其系统权限 - name: create a file file:'path=/oot/foo.txt state=touch mode=0755 own ...

  7. LeetCode 第17题--电话号码的组合(DFS)

    1. 题目 2.题目分析与思路 3.代码 1. 题目 输入:"23" 输出:["ad", "ae", "af", &qu ...

  8. 大叔 Frameworks.Entity.Core 3 Predicate

    Frameworks.Entity.Core\Commons\Predicate\ 1LinqEntity.cs /// IQueryable扩展方法:条件过滤与排序功能    /// Modify ...

  9. jade 的 考古

    Jade是一款高性能简洁易懂的模板引擎(加上这两个字我想起了发动机,为什么不直接叫发动机呢), Jade是Haml的Javascript实现, 在服务端(NodeJS)及客户端均有支持. haml 是 ...

  10. 源码详解系列(七) ------ 全面讲解logback的使用和源码

    什么是logback logback 用于日志记录,可以将日志输出到控制台.文件.数据库和邮件等,相比其它所有的日志系统,logback 更快并且更小,包含了许多独特并且有用的特性. logback ...