[编织消息框架][netty源码分析]11 ByteBuf 实现类UnpooledHeapByteBuf职责与实现


每种ByteBuf都有相应的分配器ByteBufAllocator,类似工厂模式。我们先学习UnpooledHeapByteBuf与其对应的分配器UnpooledByteBufAllocator
如何知道alloc分配器那是个?
可以从官方下载的TimeServer 例子来学习,本项目已有源码可在 TestChannelHandler.class里断点追踪
从图可以看出netty 4.1.8默认的ByteBufAllocator是PooledByteBufAllocator,可以参过启动参数-Dio.netty.allocator.type unpooled/pooled 设置
细心的读者可以看出分配ByteBuf只有pool跟unpool,但ByteBuf有很多类型,可能出于使用方面考虑,有时不一定设计太死板,太规范反而使学习成本很大

public final class ByteBufUtil {
static final ByteBufAllocator DEFAULT_ALLOCATOR;
static {
String allocType = SystemPropertyUtil.get(
"io.netty.allocator.type", PlatformDependent.isAndroid() ? "unpooled" : "pooled");
allocType = allocType.toLowerCase(Locale.US).trim();
ByteBufAllocator alloc;
if ("unpooled".equals(allocType)) {
alloc = UnpooledByteBufAllocator.DEFAULT;
} else if ("pooled".equals(allocType)) {
alloc = PooledByteBufAllocator.DEFAULT;
} else {
alloc = PooledByteBufAllocator.DEFAULT;
}
DEFAULT_ALLOCATOR = alloc;
}
}
AbstractReferenceCountedByteBuf是统计引用总数处理,用到Atomic*技术。
refCnt是从1开始,每引用一次加1,释放引用减1,当refCnt变成1时执行deallocate由子类实现
public abstract class AbstractReferenceCountedByteBuf extends AbstractByteBuf {
private static final AtomicIntegerFieldUpdater<AbstractReferenceCountedByteBuf> refCntUpdater =
AtomicIntegerFieldUpdater.newUpdater(AbstractReferenceCountedByteBuf.class, "refCnt");
private volatile int refCnt = 1;
@Override
public ByteBuf retain() {
return retain0(1);
}
private ByteBuf retain0(int increment) {
for (;;) {
int refCnt = this.refCnt;
final int nextCnt = refCnt + increment;
if (nextCnt <= increment) {
throw new IllegalReferenceCountException(refCnt, increment);
}
if (refCntUpdater.compareAndSet(this, refCnt, nextCnt)) {
break;
}
}
return this;
}
@Override
public boolean release() {
return release0(1);
}
private boolean release0(int decrement) {
for (;;) {
int refCnt = this.refCnt;
if (refCnt < decrement) {
throw new IllegalReferenceCountException(refCnt, -decrement);
}
if (refCntUpdater.compareAndSet(this, refCnt, refCnt - decrement)) {
if (refCnt == decrement) {
deallocate();
return true;
}
return false;
}
}
}
protected abstract void deallocate();
}
对于ByteBuf I/O 操作经常用的是 writeByte readByte两种
由于ByteBuf支持多种bytes对象,如 OutputStream、GatheringByteChannel、ByteBuffer、ByteBuf等,
我们只拿两三种常用的API来做分析,其它逻辑大同小异
如果读者有印象的话,通常底层只负责流程控制,实现交给应用层/子类处理,AbstractByteBuf.class writeByte/readByte 也是这种处理方式
public class UnpooledHeapByteBuf extends AbstractReferenceCountedByteBuf {
//分配器
private final ByteBufAllocator alloc;
//数据
byte[] array;
//临时ByteBuffer,用于内部缓存
private ByteBuffer tmpNioBuf;
private UnpooledHeapByteBuf(
ByteBufAllocator alloc, byte[] initialArray, int readerIndex, int writerIndex, int maxCapacity) {
//省去部分代码同边界处理
super(maxCapacity);
this.alloc = alloc;
array = initialArray;
this.readerIndex = readerIndex;
this.writerIndex = writerIndex;
}
//获取ByteBuffer容量
@Override
public int capacity() {
ensureAccessible();
return array.length;
}
@Override
public boolean hasArray() {
return true;
}
//获取原始数据
@Override
public byte[] array() {
ensureAccessible();
return array;
}
//扩容/缩容
@Override
public ByteBuf capacity(int newCapacity) {
ensureAccessible();
//newCapacity参数边界判断
if (newCapacity < 0 || newCapacity > maxCapacity()) {
throw new IllegalArgumentException("newCapacity: " + newCapacity);
}
int oldCapacity = array.length;
//扩容处理,直接cp到新的array
if (newCapacity > oldCapacity) {
byte[] newArray = new byte[newCapacity];
System.arraycopy(array, 0, newArray, 0, array.length);
setArray(newArray);
} else if (newCapacity < oldCapacity) {
//减容处理
//这里有两种处理情况
//1.readerIndex > newCapacity 说明还有数据未处理直接将 readerIndex,writerIndex相等 newCapacity
//2.否则 writerIndex =Math.min(writerIndex,newCapacity),取最少值,然后直接复制数据
//可以看出netty处理超出readerIndex、writerIndex 限界直接丢弃数据。。。。。。
byte[] newArray = new byte[newCapacity];
int readerIndex = readerIndex();
if (readerIndex < newCapacity) {
int writerIndex = writerIndex();
if (writerIndex > newCapacity) {
writerIndex = newCapacity
this.writerIndex = writerIndex;
}
System.arraycopy(array, readerIndex, newArray, readerIndex, writerIndex - readerIndex);
//System.arraycopy(复制来源数组, 来源组起始坐标, 目标数组, 目标数组起始坐标, 复制数据长度);
} else {
this.readerIndex = newCapacity;
this.writerIndex = newCapacity;
}
setArray(newArray);
}
return this;
}
}
AbstractByteBuf.class readBytes 调用子类实现 getBytes方法,区别是调用readBytes会改变readerIndex记录
public abstract class AbstractByteBuf extends ByteBuf {
@Override
public ByteBuf readBytes(ByteBuffer dst) {
int length = dst.remaining();
//checkReadableBytes(length);
if (readerIndex > (writerIndex - length)) {
throw new IndexOutOfBoundsException(String.format(
"readerIndex(%d) + length(%d) exceeds writerIndex(%d): %s",
readerIndex, length, writerIndex, this));
}
//调用子类实现
getBytes(readerIndex, dst);
//记录已读长度
readerIndex += length;
return this;
}
@Override
public ByteBuf readBytes(ByteBuf dst, int dstIndex, int length) {
checkReadableBytes(length);
getBytes(readerIndex, dst, dstIndex, length);
readerIndex += length;
return this;
}
//这里如果index不为负的话只需要 capacity - (index + length) < 0 判断就可以
//用到 | 运算 如果 index为-1的话 index | length 还是负数 第二个 | (index + length)运算有可能 index + length相加为负
public static boolean isOutOfBounds(int index, int length, int capacity) {
return (index | length | (index + length) | (capacity - (index + length))) < 0;
}
}
public class UnpooledHeapByteBuf extends AbstractReferenceCountedByteBuf {
//支持ByteBuffer读取
@Override
public ByteBuf getBytes(int index, ByteBuffer dst) {
//checkIndex(index, dst.remaining());
if (isOutOfBounds(index, dst.remaining(), capacity())) {
throw new IndexOutOfBoundsException(String.format(
"index: %d, length: %d (expected: range(0, %d))", index, dst.remaining(), capacity()));
}
dst.put(array, index, dst.remaining());
return this;
}
//支持ByteBuf读取
@Override
public ByteBuf getBytes(int index, ByteBuf dst, int dstIndex, int length) {
checkDstIndex(index, length, dstIndex, dst.capacity());
//是unsafe类型,要调用jdk unsafe方法复制
if (dst.hasMemoryAddress()) {
PlatformDependent.copyMemory(array, index, dst.memoryAddress() + dstIndex, length);
} else if (dst.hasArray()) { //如果是数组即 heap类型,直接复制过去
getBytes(index, dst.array(), dst.arrayOffset() + dstIndex, length);
} else {
dst.setBytes(dstIndex, array, index, length);
}
return this;
}
//支持数组读取
@Override
public ByteBuf getBytes(int index, byte[] dst, int dstIndex, int length) {
checkDstIndex(index, length, dstIndex, dst.length);
System.arraycopy(array, index, dst, dstIndex, length);
return this;
}
}
AbstractByteBuf.class writeBytes 调用子类实现 setBytes方法,区别是调用writeBytes会改变writerIndex记录
public abstract class AbstractByteBuf extends ByteBuf {
@Override
public ByteBuf writeBytes(ByteBuf src) {
writeBytes(src, src.readableBytes());
return this;
}
@Override
public ByteBuf writeBytes(ByteBuf src, int length) {
if (length > src.readableBytes()) {
throw new IndexOutOfBoundsException(String.format(
"length(%d) exceeds src.readableBytes(%d) where src is: %s", length, src.readableBytes(), src));
}
writeBytes(src, src.readerIndex(), length);
//读取src数据到this.ByteBuf 所以要更改src readerIndex
src.readerIndex(src.readerIndex() + length);
return this;
}
@Override
public ByteBuf writeBytes(ByteBuf src, int srcIndex, int length) {
ensureAccessible();
//是否扩容处理
ensureWritable(length);
//调用子类实现
setBytes(writerIndex, src, srcIndex, length);
//记录已写长度
writerIndex += length;
return this;
}
private void ensureWritable0(int minWritableBytes) {
if (minWritableBytes <= writableBytes()) {
return;
}
//写入数据长度大于最大空间剩余长度抛异常
if (minWritableBytes > maxCapacity - writerIndex) {
throw new IndexOutOfBoundsException(String.format(
"writerIndex(%d) + minWritableBytes(%d) exceeds maxCapacity(%d): %s",
writerIndex, minWritableBytes, maxCapacity, this));
}
//通过分配器计算,参数1写完后的writerIndex记录,参数2最大容量长度
int newCapacity = alloc().calculateNewCapacity(writerIndex + minWritableBytes, maxCapacity);
//子类实现
capacity(newCapacity);
}
//////////////////////////////AbstractByteBufAllocator.class//////////////////////////////////////
@Override
public int calculateNewCapacity(int minNewCapacity, int maxCapacity) {
if (minNewCapacity < 0) {
throw new IllegalArgumentException("minNewCapacity: " + minNewCapacity + " (expectd: 0+)");
}
if (minNewCapacity > maxCapacity) {
throw new IllegalArgumentException(String.format(
"minNewCapacity: %d (expected: not greater than maxCapacity(%d)",
minNewCapacity, maxCapacity));
}
final int threshold = 1048576 * 4; // 4 MiB page
if (minNewCapacity == threshold) {
return threshold;
}
//如果新容量大于4M,不走双倍扩大算法,数值范围取 minNewCapacity <= maxCapacity
if (minNewCapacity > threshold) {
// 除以threshold再乘以threshold得出的结果是 threshold的倍数,可以理解是去掉余数
int newCapacity = minNewCapacity / threshold * threshold;
//如果剩余容量不够4M直接给maxCapacity,否则自增4M
if (newCapacity > maxCapacity - threshold) {
newCapacity = maxCapacity;
} else {
newCapacity += threshold;
}
return newCapacity;
}
//newCapacity <<= 1 意思是 newCapacity*2,双倍自增
int newCapacity = 64;
while (newCapacity < minNewCapacity) {
newCapacity <<= 1;
}
return Math.min(newCapacity, maxCapacity);
}
}
//setBytes逻辑跟getBytes一样
public class UnpooledHeapByteBuf extends AbstractReferenceCountedByteBuf {
@Override
public ByteBuf setBytes(int index, ByteBuf src, int srcIndex, int length) {
checkSrcIndex(index, length, srcIndex, src.capacity());
if (src.hasMemoryAddress()) {
PlatformDependent.copyMemory(src.memoryAddress() + srcIndex, array, index, length);
} else if (src.hasArray()) {
setBytes(index, src.array(), src.arrayOffset() + srcIndex, length);
} else {
src.getBytes(srcIndex, array, index, length);
}
return this;
} @Override
public ByteBuf setBytes(int index, byte[] src, int srcIndex, int length) {
checkSrcIndex(index, length, srcIndex, src.length);
System.arraycopy(src, srcIndex, array, index, length);
return this;
}
}
总结:
1.writeBytes跟setBytes、readBytes跟getBytes区别是前者有记录,后者没有,而后者是子类的实现
2.扩容算法是两种策略:
2.1.大于4M时不走double自增,数值范围取 minNewCapacity <= maxCapacity
2.2.少于4M时从64开始double自增
3.更改容量也是每个子类实现,要考虑两种情况
3.1.大于当前容量
3.2.小于当前容量,当小于的时候要考虑 readerIndex、writerIndex边界,当超过 readerIndex、writerIndex边界heap的策略是丢去原来的数据
4.heap是继承 AbstractReferenceCountedByteBuf的,当refCnt记录为1时释放数据
[编织消息框架][netty源码分析]11 ByteBuf 实现类UnpooledHeapByteBuf职责与实现的更多相关文章
- [编织消息框架][netty源码分析]13 ByteBuf 实现类CompositeByteBuf职责与实现
public class CompositeByteBuf extends AbstractReferenceCountedByteBuf implements Iterable<ByteBuf ...
- [编织消息框架][netty源码分析]12 ByteBuf 实现类UnpooledDirectByteBuf职责与实现
public class UnpooledDirectByteBuf extends AbstractReferenceCountedByteBuf { private final ByteBufAl ...
- [编织消息框架][netty源码分析]6 ChannelPipeline 实现类DefaultChannelPipeline职责与实现
ChannelPipeline 负责channel数据进出处理,如数据编解码等.采用拦截思想设计,经过A handler处理后接着交给next handler ChannelPipeline 并不是直 ...
- [编织消息框架][netty源码分析]4 eventLoop 实现类NioEventLoop职责与实现
NioEventLoop 是jdk nio多路处理实现同修复jdk nio的bug 1.NioEventLoop继承SingleThreadEventLoop 重用单线程处理 2.NioEventLo ...
- [编织消息框架][netty源码分析]5 eventLoop 实现类NioEventLoopGroup职责与实现
分析NioEventLoopGroup最主有两个疑问 1.next work如何分配NioEventLoop 2.boss group 与child group 是如何协作运行的 从EventLoop ...
- [编织消息框架][netty源码分析]8 Channel 实现类NioSocketChannel职责与实现
Unsafe是托委访问socket,那么Channel是直接提供给开发者使用的 Channel 主要有两个实现 NioServerSocketChannel同NioSocketChannel 致于其它 ...
- [编织消息框架][netty源码分析]9 Promise 实现类DefaultPromise职责与实现
netty Future是基于jdk Future扩展,以监听完成任务触发执行Promise是对Future修改任务数据DefaultPromise是重要的模板类,其它不同类型实现基本是一层简单的包装 ...
- [编织消息框架][netty源码分析]5 EventLoopGroup 实现类NioEventLoopGroup职责与实现
分析NioEventLoopGroup最主有两个疑问 1.next work如何分配NioEventLoop 2.boss group 与child group 是如何协作运行的 从EventLoop ...
- [编织消息框架][netty源码分析]7 Unsafe 实现类NioSocketChannelUnsafe职责与实现
Unsafe 是channel的内部接口,从书写跟命名上看是不公开给开发者使用的,直到最后实现NioSocketChannelUnsafe也没有公开出去 public interface Channe ...
随机推荐
- Batch - Windows Batch 常用命令
比较符号(不能用 < , >) The reason operators like > are not used is because they have special meani ...
- 【JZOJ6389】小w学图论
description 小w这学期选了门图论课,他在学习点着色的知识.他现在得到了一张无向图,并希望在这张图上使用最多n种颜色给每个节点染色,使得任意一条边关联的两个节点颜色不同. 小w获得一张n个节 ...
- thinkphp 模版引擎
系统支持原生的PHP模板,而且本身内置了一个基于XML的高效的编译型模板引擎,系统默认使用的模板引擎是内置模板引擎,关于这个模板引擎的标签详细使用可以参考模版引擎部分. 内置的大理石平台检定规程模板引 ...
- cf1147
C——筛法 #include<bits/stdc++.h> using namespace std; ]; int main(){ cin>>n; ; ;i<=n;i++ ...
- Spring+Mybatis常见问题随笔
错误1:无法绑定指定方法 异常堆栈:org.apache.ibatis.binding.BindingException: Invalid bound statement (not found) 原因 ...
- VS2015遇到的自带报表的问题
1.设计报表时候,没有“报表数据”工具,直接在报表设计那里按ALT+CTRL+D 2.设计报表时候有时候找不到这些按钮,只需要重置窗口布局就行了.
- Hdu-1452-Happy 2004-费马小定理推除法逆元+同余定理+积性函数
Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your ...
- day 64 Django基础十之Form和ModelForm组件
Django基础十之Form和ModelForm组件 本节目录 一 Form介绍 二 Form常用字段和插件 三 From所有内置字段 四 字段校验 五 Hook钩子方法 六 进阶补充 七 Mod ...
- uoj#311 【UNR #2】积劳成疾
题目 考虑直接顺着从\(1\)填数填到\(n\)发现这是在胡扯 所以考虑一些奇诡的东西,譬如最后的答案长什么样子 显然某一种方案的贡献是一个\(\prod_{i=1}^nw_i^{t_i}\)状物,\ ...
- 【bzoj 3489】A simple rmq problem
题目 \(kdt\)就是数点神器 我们先扫两遍处理出每个数上一次出现的位置\(pre_i,nxt_i\),之后变成\((i,pre_i,nxt_i)\)这样一个三维空间上的点 就变成了求一个立方体的最 ...