Univariate plotting with pandas

import pandas as pd
reviews = pd.read_csv("../input/wine-reviews/winemag-data_first150k.csv", index_col=)
reviews.head() //bar
reviews['province'].value_counts().head().plot.bar()
(reviews['province'].value_counts().head() / len(reviews)).plot.bar()
reviews['points'].value_counts().sort_index().plot.bar() //line chart
reviews['points'].value_counts().sort_index().plot.line() //area chart
reviews['points'].value_counts().sort_index().plot.area() //histograms
reviews[reviews['price'] < ]['price'].plot.hist()
reviews['price'].plot.hist()
reviews[reviews['price'] > ] //pie chart
reviews['province'].value_counts().head().plot.pie()

Bivariate plotting with pandas

import pandas as pd
reviews = pd.read_csv("../input/wine-reviews/winemag-data_first150k.csv", index_col=0)
reviews.head() //Scatter plot
reviews[reviews['price'] < 100].sample(100).plot.scatter(x='price', y='points') //hexplot 数据相关性
reviews[reviews['price'] < 100].plot.hexbin(x='price', y='points', gridsize=15) //stackplot 数据堆叠
wine_counts.plot.bar(stacked=True)
wine_counts.plot.area() //Bivariate line chart 线集成
wine_counts.plot.line()

Plotting with seaborn

import pandas as pd
reviews = pd.read_csv("../input/wine-reviews/winemag-data_first150k.csv", index_col=0)
import seaborn as sns //Countplot
sns.countplot(reviews['points']) //KDE Plot 平滑去噪
sns.kdeplot(reviews.query('price < 200').price)
//对比线图
reviews[reviews['price'] < 200]['price'].value_counts().sort_index().plot.line()
//二维ked
sns.kdeplot(reviews[reviews['price'] < 200].loc[:, ['price', 'points']].dropna().sample(5000)) //Distplot
sns.distplot(reviews['points'], bins=10, kde=False) //jointplot
sns.jointplot(x='price', y='points', data=reviews[reviews['price'] < 100])
sns.jointplot(x='price', y='points', data=reviews[reviews['price'] < 100], kind='hex', gridsize=20) //Boxplot and violin plot 25%-75%,中线
df = reviews[reviews.variety.isin(reviews.variety.value_counts().head(5).index)] sns.boxplot(
x='variety',
y='points',
data=df
)

Faceting with seaborn

import pandas as pd
pd.set_option('max_columns', None)
df = pd.read_csv("../input/fifa-18-demo-player-dataset/CompleteDataset.csv", index_col=0) import re
import numpy as np
import seaborn as sns footballers = df.copy()
footballers['Unit'] = df['Value'].str[-1]
footballers['Value (M)'] = np.where(footballers['Unit'] == '', 0,
footballers['Value'].str[1:-1].replace(r'[a-zA-Z]',''))
footballers['Value (M)'] = footballers['Value (M)'].astype(float)
footballers['Value (M)'] = np.where(footballers['Unit'] == 'M',
footballers['Value (M)'],
footballers['Value (M)']/1000)
footballers = footballers.assign(Value=footballers['Value (M)'],
Position=footballers['Preferred Positions'].str.split().str[0]) //The FacetGrid
df = footballers[footballers['Position'].isin(['ST', 'GK'])]
g = sns.FacetGrid(df, col="Position")
g.map(sns.kdeplot, "Overall") df = footballers
g = sns.FacetGrid(df, col="Position", col_wrap=6)//,每行6列
g.map(sns.kdeplot, "Overall") df = footballers[footballers['Position'].isin(['ST', 'GK'])]
df = df[df['Club'].isin(['Real Madrid CF', 'FC Barcelona', 'Atlético Madrid'])]
g = sns.FacetGrid(df, row="Position", col="Club",
row_order=['GK', 'ST'],
col_order=['Atlético Madrid', 'FC Barcelona', 'Real Madrid CF'])
g.map(sns.violinplot, "Overall") //violin图 //Pairplot 数据分析第一步
sns.pairplot(footballers[['Overall', 'Potential', 'Value']])

Multivariate plotting

import pandas as pd
pd.set_option('max_columns', None)
df = pd.read_csv("../input/fifa-18-demo-player-dataset/CompleteDataset.csv", index_col=0) import re
import numpy as np footballers = df.copy()
footballers['Unit'] = df['Value'].str[-1]
footballers['Value (M)'] = np.where(footballers['Unit'] == '', 0,
footballers['Value'].str[1:-1].replace(r'[a-zA-Z]',''))
footballers['Value (M)'] = footballers['Value (M)'].astype(float)
footballers['Value (M)'] = np.where(footballers['Unit'] == 'M',
footballers['Value (M)'],
footballers['Value (M)']/1000)
footballers = footballers.assign(Value=footballers['Value (M)'],
Position=footballers['Preferred Positions'].str.split().str[0]) //Multivariate scatter plots
import seaborn as sns
sns.lmplot(x='Value', y='Overall', hue='Position',
data=footballers.loc[footballers['Position'].isin(['ST', 'RW', 'LW'])],
fit_reg=False) sns.lmplot(x='Value', y='Overall', markers=['o', 'x', '*'], hue='Position',
data=footballers.loc[footballers['Position'].isin(['ST', 'RW', 'LW'])],
fit_reg=False
) //Grouped box plot 分组的优势
f = (footballers
.loc[footballers['Position'].isin(['ST', 'GK'])]
.loc[:, ['Value', 'Overall', 'Aggression', 'Position']]
)
f = f[f["Overall"] >= 80]
f = f[f["Overall"] < 85]
f['Aggression'] = f['Aggression'].astype(float)
sns.boxplot(x="Overall", y="Aggression", hue='Position', data=f) //Heatmap
f = (
footballers.loc[:, ['Acceleration', 'Aggression', 'Agility', 'Balance', 'Ball control']]
.applymap(lambda v: int(v) if str.isdecimal(v) else np.nan)
.dropna()
).corr()
sns.heatmap(f, annot=True) //Parallel Coordinates
from pandas.plotting import parallel_coordinates f = (
footballers.iloc[:, 12:17]
.loc[footballers['Position'].isin(['ST', 'GK'])]
.applymap(lambda v: int(v) if str.isdecimal(v) else np.nan)
.dropna()
)
f['Position'] = footballers['Position']
f = f.sample(200)
parallel_coordinates(f, 'Position')

plotly

import pandas as pd
reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv", index_col=0)
reviews.head() from plotly.offline import init_notebook_mode, iplot
init_notebook_mode(connected=True) #离线注入笔记本模式 import plotly.graph_objs as go
iplot([go.Scatter(x=reviews.head(1000)['points'], y=reviews.head(1000)['price'], mode='markers')]) iplot([go.Histogram2dContour(x=reviews.head(500)['points'],
y=reviews.head(500)['price'],
contours=go.Contours(coloring='heatmap')),
go.Scatter(x=reviews.head(1000)['points'], y=reviews.head(1000)['price'], mode='markers')]) #surface图
df = reviews.assign(n=0).groupby(['points', 'price'])['n'].count().reset_index() #先point分组再price分,再添加的‘n’列上执行计数,最后对首列的index重新排序
df = df[df["price"] < 100]
v = df.pivot(index='price', columns='points', values='n').fillna(0).values.tolist() #重塑数组后用0填充NAN值,再把values列变成list
iplot([go.Surface(z=v)]) #地理图
df = reviews['country'].replace("US", "United States").value_counts() iplot([go.Choropleth(
locationmode='country names',
locations=df.index.values,
text=df.index,
z=df.values
)])

Data Visualisation Cheet Sheet的更多相关文章

  1. Object对象方法 cheet sheet

    defineProperty create Object.create(prototype [, propertiesObject ]) prototype:没什么可说的,指定对象的原型 proper ...

  2. 使用Python对Twitter进行数据挖掘(Mining Twitter Data with Python)

    目录 1.Collecting data 1.1 Register Your App 1.2 Accessing the Data 1.3 Streaming 2.Text Pre-processin ...

  3. 学习笔记之Data Visualization

    Data visualization - Wikipedia https://en.wikipedia.org/wiki/Data_visualization Data visualization o ...

  4. Mining Twitter Data with Python

    目录 1.Collecting data 1.1 Register Your App 1.2 Accessing the Data 1.3 Streaming 2.Text Pre-processin ...

  5. Import Data from *.xlsx file to DB Table through OAF page(转)

    Use  Poi.jar Import Data from *.xlsx file to DB Table through OAF page Use Jxl.jar Import Data from ...

  6. 【翻译】Awesome R资源大全中文版来了,全球最火的R工具包一网打尽,超过300+工具,还在等什么?

    0.前言 虽然很早就知道R被微软收购,也很早知道R在统计分析处理方面很强大,开始一直没有行动过...直到 直到12月初在微软技术大会,看到我软的工程师演示R的使用,我就震惊了,然后最近在网上到处了解和 ...

  7. R统计分析处理

    [翻译]Awesome R资源大全中文版来了,全球最火的R工具包一网打尽,超过300+工具,还在等什么? 阅读目录 0.前言 1.集成开发环境 2.语法 3.数据操作 4.图形显示 5.HTML部件 ...

  8. Sed&awk笔记之awk篇

    http://blog.csdn.net/a81895898/article/details/8482333 Awk是什么 Awk.sed与grep,俗称Linux下的三剑客,它们之间有很多相似点,但 ...

  9. R工具包一网打尽

    这里有很多非常不错的R包和工具. 该想法来自于awesome-machine-learning. 这里是包的导航清单,看起来更方便 >>>导航清单 通过这些翻译了解这些工具包,以后干 ...

随机推荐

  1. jeecms v9 vue-CLI开发环境配置

    vue-CLI开发环境配置 Vue.js 提供一个官方命令行工具,可用于快速搭建大型单页应用.该工具提供开箱即用的构建工具配置,带来现代化的前端开发流程.只需几分钟即可创建并启动一个带热重载.保存时静 ...

  2. Docker在线文档收集

    极客学院 kubernetes中文社区 易百教程

  3. quatz调度-手动终止线程(2) Cleaner线程做清理工作

    import java.util.concurrent.ArrayBlockingQueue; import java.util.concurrent.BlockingQueue; import ja ...

  4. 看了这么N多天DELPHI,突然我有个感觉

    感觉DELPHI很像Win32汇编   语法上不谈,就编写格式.形式上,很像 delphi的一个函数   procedure TForm1.btn1Click(Sender: TObject);beg ...

  5. JAVA缓存的实现

    缓存可分为二大类: 一.通过文件缓存,顾名思义文件缓存是指把数据存储在磁盘上,不管你是以XML格式,序列化文件DAT格式还是其它文件格式: 二.内存缓存,也就是实现一个类中静态Map,对这个Map进行 ...

  6. HBase的安装与配置

  7. pptp,l2tp获取登录用户信息用pppd参数即可

    这个问题困扰了我很久,终于在pppd的man文档里,发现了踪迹.在man中的SCRIPTS下有一系列的参数,其中PEERNAME就是登陆的用户名,并且在/etc/ppp/ip-up和/etc/ppp/ ...

  8. [SHOI2007] 书柜的尺寸 思维题+Dp+空间优化

    Online Judge:Luogu-P2160 Label:思维题,Dp,空间优化 题面: 题目描述 给\(N\)本书,每本书有高度\(Hi\),厚度\(Ti\).要摆在一个三层的书架上. 书架的宽 ...

  9. mysql查看执行计划重构后的查询

    MYSQL优化器会对客服端发送的SQL语句进行优化,优化后的SQL语句再被MYSQL执行.然后我们在优化SQL的时候,怎么获取到MYSQL优化后执行语句呢. EXPLAIN select * from ...

  10. 定时运行某个php文件的bat文件

    1.bat C:\phpStudy\php54n\php.exe -q D:\WWW\wdysp.zhuwangkj.com\wap\user_ABCD_grade.php pwd=6666sqwdw ...