题目链接

传送门

题意

初始时有\(n\)堆石子,每堆石子的石子个数为\(a_i\),然后进行游戏。

游戏规则为你可以选择任意两堆石子,然后从这两堆中移除一个石子,最后石子个数变为\(0\)则获胜否则失败。由于总石子个数可能为奇数,此时不可能获胜,因此加了个规则为如果石子个数为奇数,那么可以事先移除一个石子。

问你有多少个区间能让玩游戏的人获胜。

思路

经过模型转换后题意变为有多少个区间,区间内石子个数之和大于等于石子最大数的两倍。

启发式分治,大体处理方法和这题一样。

代码

#include <set>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; typedef long long LL;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pLi;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL; #define lson (rt<<1),L,mid
#define rson (rt<<1|1),mid + 1,R
#define lowbit(x) x&(-x)
#define name2str(name) (#name)
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
#define FIN freopen("/home/dillonh/CLionProjects/Dillonh/in.txt","r",stdin)
#define IO ios::sync_with_stdio(false),cin.tie(0) const double eps = 1e-8;
const int mod = 1000000007;
const int maxn = 300000 + 2;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3fLL; LL ans;
int _, n;
LL sum[maxn];
int a[maxn], dp[maxn][20], pos[maxn][20], lg[maxn]; void init() {
lg[0] = -1;
for(int i = 1; i <= n; ++i) lg[i] = lg[i>>1] + 1;
for(int j = 1; j <= lg[n]; ++j) {
for(int i = 1; i + (1<<j) - 1 <= n; ++i) {
if(dp[i][j-1] >= dp[i+(1<<(j-1))][j-1]) {
dp[i][j] = dp[i][j-1];
pos[i][j] = pos[i][j-1];
} else {
dp[i][j] = dp[i+(1<<(j-1))][j-1];
pos[i][j] = pos[i+(1<<(j-1))][j-1];
}
}
}
} int query(int l, int r) {
int k = lg[r-l+1];
if(dp[l][k] >= dp[r-(1<<k)+1][k]) return pos[l][k];
else return pos[r-(1<<k)+1][k];
} void solve(int l, int r) {
if(l >= r) return;
if(l + 1 == r) {
ans += (a[l] == a[r]);
return;
}
int pos = query(l, r);
if(r - pos > pos - l) {
for(int i = l; i <= pos; ++i) {
int ub = r, lb = pos + 1, mid, pp = -1;
if(i != pos) lb = pos;
while(ub >= lb) {
mid = (ub + lb) >> 1;
if(sum[mid] - sum[i-1] >= 2 * a[pos]) {
pp = mid;
ub = mid - 1;
} else {
lb = mid + 1;
}
}
if(pp == -1) continue;
ans += (r - pp + 1);
}
} else {
for(int i = pos; i <= r; ++i) {
int ub = pos - 1, lb = l, mid, pp = -1;
if(i != pos) ub = pos;
while(ub >= lb) {
mid = (ub + lb) >> 1;
if(sum[i] - sum[mid-1] >= 2 * a[pos]) {
pp = mid;
lb = mid + 1;
} else {
ub = mid - 1;
}
}
if(pp == -1) continue;
ans += (pp - l + 1);
}
}
solve(l, pos - 1), solve(pos + 1, r);
} int main() {
#ifndef ONLINE_JUDGE
FIN;
#endif
scanf("%d", &_);
while(_--) {
scanf("%d", &n);
for(int i = 1; i <= n; ++i) {
scanf("%d", &a[i]);
sum[i] = sum[i-1] + a[i];
dp[i][0] = a[i];
pos[i][0] = i;
}
init();
ans = 0;
solve(1, n);
printf("%lld\n", ans);
}
return 0;
}

Removing Stones(2019年牛客多校第三场G+启发式分治)的更多相关文章

  1. 牛客多校第三场 G Removing Stones(分治+线段树)

    牛客多校第三场 G Removing Stones(分治+线段树) 题意: 给你n个数,问你有多少个长度不小于2的连续子序列,使得其中最大元素不大于所有元素和的一半 题解: 分治+线段树 线段树维护最 ...

  2. [2019牛客多校第三场][G. Removing Stones]

    题目链接:https://ac.nowcoder.com/acm/contest/883/G 题目大意:有\(n\)堆石头,每堆有\(a_i\)个,每次可以选其中两堆非零的石堆,各取走一个石子,当所有 ...

  3. 启发式分治:2019牛客多校第三场 G题 Removing Stones

    问题可以转换为求有多少个区间数字的总和除2向下取整大于等于最大值.或者解释为有多少个区间数字的总和大于等于最大值的两倍(但是若区间数字总和为奇数,需要算作减1) 启发式分治: 首先按最大值位置分治,遍 ...

  4. 2019年牛客多校第三场 F题Planting Trees(单调队列)

    题目链接 传送门 题意 给你一个\(n\times n\)的矩形,要你求出一个面积最大的矩形使得这个矩形内的最大值减最小值小于等于\(M\). 思路 单调队列滚动窗口. 比赛的时候我的想法是先枚举长度 ...

  5. 牛客多校第三场 F Planting Trees

    牛客多校第三场 F Planting Trees 题意: 求矩阵内最大值减最小值大于k的最大子矩阵的面积 题解: 矩阵压缩的技巧 因为对于我们有用的信息只有这个矩阵内的最大值和最小值 所以我们可以将一 ...

  6. 牛客多校第三场 A—pacm team (4维背包加路径压缩)

    链接:https://www.nowcoder.com/acm/contest/141/A 来源:牛客网 Eddy was a contestant participating , Eddy fail ...

  7. 牛客多校第四场 G Maximum Mode

    链接:https://www.nowcoder.com/acm/contest/142/G来源:牛客网 The mode of an integer sequence is the value tha ...

  8. Distance(2019年牛客多校第八场D题+CDQ+树状数组)

    题目链接 传送门 思路 这个题在\(BZOJ\)上有个二维平面的版本(\(BZOJ2716\)天使玩偶),不过是权限题因此就不附带链接了,我也只是在算法进阶指南上看到过,那个题的写法是\(CDQ\), ...

  9. 2019年牛客多校第四场 B题xor(线段树+线性基交)

    题目链接 传送门 题意 给你\(n\)个基底,求\([l,r]\)内的每个基底是否都能异或出\(x\). 思路 线性基交板子题,但是一直没看懂咋求,先偷一份咖啡鸡板子写篇博客吧~ 线性基交学习博客:传 ...

随机推荐

  1. Graphviz学习

    (入门教程)[https://www.luogu.com.cn/blog/umr/graphviz]

  2. CF1149D Abandoning Roads(图论,最短路,状态压缩,最小生成树)

    题目大意:$n$ 个点,$m$ 条边的无向图,边权只有两种,小的为 $a$,大的为 $b$. 对于每个点 $p$,询问在这张图所有的最小生成树上,$1$ 到 $p$ 的最短距离的最小值. $2\le ...

  3. [LeetCode] 878. Nth Magical Number 第N个神奇数字

    A positive integer is magical if it is divisible by either A or B. Return the N-th magical number.  ...

  4. Oracle 10G RAC集群安装

    一,基本环境配置 01,hosts cat /etc/hosts 127.0.0.1 localhost localhost.localdomain localhost4 localhost4.loc ...

  5. C# socket ipv6初体验

    Server: serverSocket = new Socket(AddressFamily.InterNetworkV6, SocketType.Stream, ProtocolType.Tcp) ...

  6. Where are registered servers stored?

    https://stackoverflow.com/questions/3064289/where-are-registered-servers-stored   They are kept as a ...

  7. 如何在 VS2015 上开发 Qt 程序

    所有Qt版本下载地址: http://download.qt.io/archive/qt/ 所有Qt Creator下载地址: http://download.qt.io/archive/qtcrea ...

  8. Unity Shader 2D水流效果

    水流的模拟主要运用了顶点变换和纹理动画的结合: 顶点变换中,利用正弦函数模拟河流的大致形态,例如波长,振幅等. 纹理动画中,将纹理坐标朝某一方向持续滚动以形成流动的效果. 脚本如下: Shader & ...

  9. pymysql模块常用操作

    pymysql安装 pip install pymysql 链接数据库.执行sql.关闭连接 import pymysql user = input('请输入用户名请输入密码:').strip() p ...

  10. 15、VUEX-Store

    1.什么是VUEX Vuex是管理vue的组件状态的工具. 个人理解:vuex是管理组件之间通信的一个插件. 2.为什么要用VUEX 我们知道组件之间是独立的,组件之间想要实现通信,我目前知道的就只有 ...