gensim中word2vec
from gensim.models import Word2Vec
Word2Vec(self, sentences=None, size=100, alpha=0.025, window=5, min_count=5,
max_vocab_size=None, sample=1e-3, seed=1, workers=3, min_alpha=0.0001,
sg=0, hs=0, negative=5, cbow_mean=1, hashfxn=hash, iter=5, null_word=0,
trim_rule=None, sorted_vocab=1, batch_words=MAX_WORDS_IN_BATCH, compute_loss=False, callbacks=()):
"""
Initialize the model from an iterable of `sentences`. Each sentence is a
list of words (unicode strings) that will be used for training. Parameters
----------
sentences : iterable of iterables
待分析的语料,可以是一个列表,或者从文件中遍历读出。对于大语料集,建议使用BrownCorpus,Text8Corpus或lineSentence构建。
sg : int {1, 0}
定义训练算法. sg=1:skip-gram(输入word输出上下文); sg=0:CBOW(输入上下文输出word),默认sg=0,即CBOW模型
size : int
特征向量或词向量的维度,默认值是100
window : int
词向量上下文最大距离,skip-gram和cbow算法是基于滑动窗口来做预测。默认值为5。在实际使用中,可以根据实际的需求来动态调整这个window的大小。对于一般的语料这个值推荐在[5,10]之间。
alpha : float
是初始的学习速率,在训练过程中会线性地递减到min_alpha.
min_alpha : float
算法支持在迭代的过程中逐渐减小步长,min_alpha给出了最小的迭代步长值.
seed : int
用于随机数发生器, word + `str(seed)`的哈希值作为每个词的初始向量
min_count : int
最小截断值, 词频少于min_count次数的单词会被丢弃掉,默认值为5.
max_vocab_size : int
设置词向量构建期间的RAM限制,设置成None则没有限制。 Every 10 million word types need about 1GB of RAM.
sample : float
高频词汇的随机降采样的配置阈值,默认为1e-3,范围是(0,1e-5)。
workers : int
用于控制训练的并行数
hs : int {1,0}
word2vec两个解法的选择:如果是0, 则是Negative Sampling;如果是1并且负采样个数negative大于0, 则是Hierarchical Softmax。默认是0即Negative Sampling。
negative : int
如果大于0,则会采用negativesampling,用于设置多少个noise words(一般是5-20)。
cbow_mean : int {1,0}
仅用于CBOW在做投影的时候,为0,则采用上下文的词向量之和;为1则为上下文的词向量的平均值。默认值也是1,不推荐修改默认值。
hashfxn : function
hash函数来初始化权重,默认使用python的hash函数。
iter : int
随机梯度下降法中迭代的最大次数,默认是5。对于大语料,可以增大这个值。
trim_rule : function
用于设置词汇表的整理规则,指定那些单词要留下,哪些要被删除。可以设置为None(min_count会被使用)。
sorted_vocab : int {1,0}
如果为1(默认),则在分配word index 的时候会先对单词基于频率降序排序。
batch_words : int
每一批的传递给线程的单词的数量,默认为10000。 Examples
--------
Initialize and train a `Word2Vec` model from gensim.models import Word2Vec
sentences = [["cat", "say", "meow"], ["dog", "say", "woof"]]
model = Word2Vec(sentences, min_count=1)
say_vector = model['say'] # get vector for word
gensim中word2vec的更多相关文章
- gensim中word2vec和其他一些向量的使用
直接上代码吧,word2vec # test from gensim.models.word2vec import Word2Vec txt_file = open('data.txt') sente ...
- 用gensim学习word2vec
在word2vec原理篇中,我们对word2vec的两种模型CBOW和Skip-Gram,以及两种解法Hierarchical Softmax和Negative Sampling做了总结.这里我们就从 ...
- 文本分布式表示(三):用gensim训练word2vec词向量
今天参考网上的博客,用gensim训练了word2vec词向量.训练的语料是著名科幻小说<三体>,这部小说我一直没有看,所以这次拿来折腾一下. <三体>这本小说里有不少人名和一 ...
- 解决在使用gensim.models.word2vec.LineSentence加载语料库时报错 UnicodeDecodeError: 'utf-8' codec can't decode byte......的问题
在window下使用gemsim.models.word2vec.LineSentence加载中文维基百科语料库(已分词)时报如下错误: UnicodeDecodeError: 'utf-8' cod ...
- 深度学习 —— 使用 gensim 实现 word2vec
在自然语言处理领域中,将单词(words)或词语(phases)映射到向量空间(vector space)中可以很容易就得到单词之间的相似度,因为向量空间中两个向量的相似度很容易求得,比如余弦相似度. ...
- 机器学习:gensim之Word2Vec 详解
一 前言 Word2Vec是同上一篇提及的PageRank一样,都是Google的工程师和机器学习专家所提出的的:在学习这些算法.模型的时候,最好优先去看Google提出者的原汁Paper和Proje ...
- gensim的word2vec如何得出词向量(python)
首先需要具备gensim包,然后需要一个语料库用来训练,这里用到的是skip-gram或CBOW方法,具体细节可以去查查相关资料,这两种方法大致上就是把意思相近的词映射到词空间中相近的位置. 语料库t ...
- gensim中TaggedDocument 怎么使用
我有两个目录,我想从中读取它们的文本文件并给它们贴上标签,但我不知道如何通过taggedDocument来实现这一点.我以为它可以作为标记文档([strings],[labels])工作,但这显然不起 ...
- Python gensim库word2vec 基本用法
ip install gensim安装好库后,即可导入使用: 1.训练模型定义 from gensim.models import Word2Vec model = Word2Vec(senten ...
随机推荐
- 《挑战30天C++入门极限》引言
作为一个长篇的C++入门教程,无论如何也应该有这么个引言,可是文笔并不好的我,想了很久也不知道该如何写...... 仔细想想,与其把这篇短文当作教程的引言,其实它更应该是一篇引导初学者步入C++殿堂的 ...
- Iptables 之二扩展模块 nat
问题一:如果开发被动模式的ftp服务? 21号端口是命令连接端口,数据连接端口不固定 三步骤: (1)装载ftp追踪时的专用的模块 /lib/modules/$(uname-r)/kernel/ker ...
- Prometheus Consul实现自动服务发现
Prometheus Consul实现自动服务发现 1.概述 Consul 是一个支持多数据中心分布式高可用的服务发现和配置共享的服务软件. Consul 由 HashiCorp公司用Go语言开发 ...
- 实体类(VO,DO,DTO,PO)的划分《转载---》
转载自:https://blog.csdn.net/u010722643/article/details/61201899 经常会接触到VO,DO,DTO的概念,本文从领域建模中的实体划分和项目中的实 ...
- C#中的线程之Abort陷阱
.简介 C#中通常使用线程类Thread来进行线程的创建与调度,博主在本文中将分享多年C#开发中遇到的Thread使用陷阱. Thread调度其实官方文档已经说明很详细了.本文只简单说明,不做深入探讨 ...
- Java SpringBoot使用Redis缓存和Ehcache
<?xml version="1.0" encoding="UTF-8"?> <ehcache xmlns:xsi="http:// ...
- Status Code: 431 Request Header Fields Too Large
Status Code: 431 Request Header Fields Too Large
- 在input内添加小图标或文字(元/月)等
文字: <td class="formValue"> <div class="input-group"> <input id=&q ...
- Nexus3.X忘记admin密码找回
一.问题背景 nexus3 这种东西,传完一次,很少动了,很容易忘记密码,不要急有方法找回. 官方网站关于解决该问题的方法: https://support.sonatype.com/hc/en-us ...
- [转]IE、FireFox、Chrome浏览器中关于URL传参中文乱码,解决兼容性问题!
原文地址:https://cloud.tencent.com/developer/article/1334736 前台用url传值中文,后台用request.getParameter接收参数.在Fir ...