Description

题库链接

一共有 \(n\) 个关卡,你初始在第一个关卡。通过第 \(i\) 个关卡的概率为 \(p_i\)。每一轮你可以挑战一个关卡。若通过第 \(i\) 个关卡,则进入第 \(i+1\) 个关卡,否则重新回到第 \(1\) 个关卡。通过第 \(n\) 个关卡则算成功。问期望多少轮游戏才能成功。

\(1\leq n\leq 2\cdot 10^5\)

Solution

设从第 \(i\) 个关卡通关的期望为 \(E_i\)。显然
\[
E_i=p_i(E_{i+1}+1)+(1-p_i)(E_1+1)
\]

特别地,\(E_{n+1}=0\),且答案为 \(E_1\)。

那么有
\[
E_1=p_1(E_2+1)+(1-p_1)(E_1+1)\Rightarrow E_1=\frac{1}{p_1}+E_2
\]

同理将上述式子代入
\[
E_2=p_2(E_3+1)+(1-p_2)(E_2+1)\Rightarrow E_1=\frac{1+\frac{1}{p_1}}{p_2}+E_3
\]

继续推导可以发现答案为
\[
E_1=\frac{1+\frac{1+\frac{1+\cdots}{p_{n-2}}}{p_{n-1}}}{p_n}
\]

Code

#include <bits/stdc++.h>
using namespace std;
const int yzh = 998244353; int quick_pow(int a, int b) {
int ans = 1;
while (b) {
if (b&1) ans = 1ll*ans*a%yzh;
b >>= 1, a = 1ll*a*a%yzh;
}
return ans;
}
int main() {
int ans = 0, p, n;
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d", &p);
ans = (ans+1)%yzh;
ans = 1ll*ans*100%yzh*quick_pow(p, yzh-2)%yzh;
}
printf("%d\n", ans);
return 0;
}

[Codeforces 1265E]Beautiful Mirrors的更多相关文章

  1. Codeforces 1264C/1265E Beautiful Mirrors with queries (概率期望、DP)

    题目链接 http://codeforces.com/contest/1264/problem/C 题解 吐槽:为什么我赛后看cf的题就经常1h内做出Div.1 C, 一打cf就动不动AB题不会啊-- ...

  2. Codeforces - 1264C - Beautiful Mirrors with queries - 概率期望dp

    一道挺难的概率期望dp,花了很长时间才学会div2的E怎么做,但这道题是另一种设法. https://codeforces.com/contest/1264/problem/C 要设为 \(dp_i\ ...

  3. Codeforces 55D Beautiful Number

    Codeforces 55D Beautiful Number a positive integer number is beautiful if and only if it is divisibl ...

  4. CodeForces 55D "Beautiful numbers"(数位DP+离散化处理)

    传送门 参考资料: [1]:CodeForces 55D Beautiful numbers(数位dp&&离散化) 我的理解: 起初,我先定义一个三维数组 dp[ i ][ j ][ ...

  5. Codeforces 55D. Beautiful numbers(数位DP,离散化)

    Codeforces 55D. Beautiful numbers 题意 求[L,R]区间内有多少个数满足:该数能被其每一位数字都整除(如12,24,15等). 思路 一开始以为是数位DP的水题,觉得 ...

  6. Codeforces Round #604 (Div. 2) E. Beautiful Mirrors

    链接: https://codeforces.com/contest/1265/problem/E 题意: Creatnx has n mirrors, numbered from 1 to n. E ...

  7. Codeforces Round #604 (Div. 2) E. Beautiful Mirrors 题解 组合数学

    题目链接:https://codeforces.com/contest/1265/problem/E 题目大意: 有 \(n\) 个步骤,第 \(i\) 个步骤成功的概率是 \(P_i\) ,每一步只 ...

  8. codeforces div2_604 E. Beautiful Mirrors(期望+费马小定理)

    题目链接:https://codeforces.com/contest/1265/problem/E 题意:有n面镜子,你现从第一面镜子开始询问,每次问镜子"今天我是否美丽",每天 ...

  9. Codeforces Round #604 (Div. 1) - 1C - Beautiful Mirrors with queries

    题意 给出排成一列的 \(n\) 个格子,你要从 \(1\) 号格子走到 \(n\) 号格子之后(相当于 \(n+1\) 号格子),一旦你走到 \(i+1\) 号格子,游戏结束. 当你在 \(i\) ...

随机推荐

  1. oracle 在列名后的 (+)是什么意思,如何转换为mysql

    外连接的意思select *from a,bwhere a.id=b.id(+)意思就是返回a,b中匹配的行 和 a中有但是b中没有的行. 参考https://www.cnblogs.com/Aaro ...

  2. [转帖]LINUX PID 1 和 SYSTEMD

    LINUX PID 1 和 SYSTEMD 2017年07月16日 陈皓 评论 46 条评论  57,176 人阅读 https://coolshell.cn/articles/17998.html ...

  3. [转帖]linux下安装7z命令及7z命令的使用

    linux下安装7z命令及7z命令的使用 https://www.cnblogs.com/yiwd/p/3649094.html yum install p7zip 执行命令为 7za x 或者是 7 ...

  4. [转帖]【ZOOKEEPER系列】Paxos、Raft、ZAB

    [ZOOKEEPER系列]Paxos.Raft.ZAB 2018-07-11 12:09:49 wangzy-nice 阅读数 2428更多 分类专栏: zookeeper   版权声明:本文为博主原 ...

  5. 如何申请高德地图用户Key

    打开网页https://lbs.amap.com/,进入高德开发平台. 单击箭头处[注册],打开注册页面.(如果您已注册为高德地图开发者可跳过此步骤,直接登录即可). 选择[成为个人开发者],如果您是 ...

  6. IDEA中MavenWeb项目没有新建servlet文件

    解决方案: https://blog.csdn.net/Delicious_Life/article/details/89515363

  7. 开灯问题—C语言

    开灯问题 有n盏灯,编号为1~n.第1个人把所有灯打开,第2个人按下所有编号为2的倍数开关(这些灯将被关掉),第3个人按下所有编号为3的倍数的开关,以此类推.一共有k个人,问最后哪些灯是开着?输入n和 ...

  8. ZYNQ笔记(3):GPIO的使用(MIO、EMIO)——led灯

    一.GPIO原理 1.GPIO介绍 程序员通过软件代码可以独立和动态地对每个 GPIO 进行控制,使其作为输入.输出或中断. (1)通过一个加载指令,软件可以读取一个 GPIO 组内所有 GPIO 的 ...

  9. kali之使用sqlmap进行sql注入

    sqlmap简介 sqlmap支持五种不同的注入模式: 1.基于布尔的盲注,即可以根据返回页面判断条件真假的注入. 2.基于时间的盲注,即不能根据页面返回内容判断任何信息,用条件语句查看时间延迟语句是 ...

  10. pandas-07 DataFrame修改index、columns名的方法

    pandas-07 DataFrame修改index.columns名的方法 一般常用的有两个方法: 1.使用DataFrame.index = [newName],DataFrame.columns ...