[Codeforces 1265E]Beautiful Mirrors
Description
一共有 \(n\) 个关卡,你初始在第一个关卡。通过第 \(i\) 个关卡的概率为 \(p_i\)。每一轮你可以挑战一个关卡。若通过第 \(i\) 个关卡,则进入第 \(i+1\) 个关卡,否则重新回到第 \(1\) 个关卡。通过第 \(n\) 个关卡则算成功。问期望多少轮游戏才能成功。
\(1\leq n\leq 2\cdot 10^5\)
Solution
设从第 \(i\) 个关卡通关的期望为 \(E_i\)。显然
\[
E_i=p_i(E_{i+1}+1)+(1-p_i)(E_1+1)
\]
特别地,\(E_{n+1}=0\),且答案为 \(E_1\)。
那么有
\[
E_1=p_1(E_2+1)+(1-p_1)(E_1+1)\Rightarrow E_1=\frac{1}{p_1}+E_2
\]
同理将上述式子代入
\[
E_2=p_2(E_3+1)+(1-p_2)(E_2+1)\Rightarrow E_1=\frac{1+\frac{1}{p_1}}{p_2}+E_3
\]
继续推导可以发现答案为
\[
E_1=\frac{1+\frac{1+\frac{1+\cdots}{p_{n-2}}}{p_{n-1}}}{p_n}
\]
Code
#include <bits/stdc++.h>
using namespace std;
const int yzh = 998244353;
int quick_pow(int a, int b) {
int ans = 1;
while (b) {
if (b&1) ans = 1ll*ans*a%yzh;
b >>= 1, a = 1ll*a*a%yzh;
}
return ans;
}
int main() {
int ans = 0, p, n;
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d", &p);
ans = (ans+1)%yzh;
ans = 1ll*ans*100%yzh*quick_pow(p, yzh-2)%yzh;
}
printf("%d\n", ans);
return 0;
}
[Codeforces 1265E]Beautiful Mirrors的更多相关文章
- Codeforces 1264C/1265E Beautiful Mirrors with queries (概率期望、DP)
题目链接 http://codeforces.com/contest/1264/problem/C 题解 吐槽:为什么我赛后看cf的题就经常1h内做出Div.1 C, 一打cf就动不动AB题不会啊-- ...
- Codeforces - 1264C - Beautiful Mirrors with queries - 概率期望dp
一道挺难的概率期望dp,花了很长时间才学会div2的E怎么做,但这道题是另一种设法. https://codeforces.com/contest/1264/problem/C 要设为 \(dp_i\ ...
- Codeforces 55D Beautiful Number
Codeforces 55D Beautiful Number a positive integer number is beautiful if and only if it is divisibl ...
- CodeForces 55D "Beautiful numbers"(数位DP+离散化处理)
传送门 参考资料: [1]:CodeForces 55D Beautiful numbers(数位dp&&离散化) 我的理解: 起初,我先定义一个三维数组 dp[ i ][ j ][ ...
- Codeforces 55D. Beautiful numbers(数位DP,离散化)
Codeforces 55D. Beautiful numbers 题意 求[L,R]区间内有多少个数满足:该数能被其每一位数字都整除(如12,24,15等). 思路 一开始以为是数位DP的水题,觉得 ...
- Codeforces Round #604 (Div. 2) E. Beautiful Mirrors
链接: https://codeforces.com/contest/1265/problem/E 题意: Creatnx has n mirrors, numbered from 1 to n. E ...
- Codeforces Round #604 (Div. 2) E. Beautiful Mirrors 题解 组合数学
题目链接:https://codeforces.com/contest/1265/problem/E 题目大意: 有 \(n\) 个步骤,第 \(i\) 个步骤成功的概率是 \(P_i\) ,每一步只 ...
- codeforces div2_604 E. Beautiful Mirrors(期望+费马小定理)
题目链接:https://codeforces.com/contest/1265/problem/E 题意:有n面镜子,你现从第一面镜子开始询问,每次问镜子"今天我是否美丽",每天 ...
- Codeforces Round #604 (Div. 1) - 1C - Beautiful Mirrors with queries
题意 给出排成一列的 \(n\) 个格子,你要从 \(1\) 号格子走到 \(n\) 号格子之后(相当于 \(n+1\) 号格子),一旦你走到 \(i+1\) 号格子,游戏结束. 当你在 \(i\) ...
随机推荐
- 002 spring boot框架,引入mybatis-generator插件,自动生成Mapper和Entity
1.创建一个springboot项目 2.创建项目的文件结构以及jdk的版本 3.选择项目所需要的依赖 点击next,直到项目构建完成. 4.项目初步结构 5.POM文件 <?xml versi ...
- sudo apt-get install libstdc++6
sudo apt-get install libstdc++6 yum install libncurses.so.5 sudo apt-get install libncurses.so.5 su ...
- 获取本机的IP地址和mac地址
1. 以前一直用ipconfig来查看ip地址,哈哈哈,现在发现挺好玩 #获取本机的IP地址和mac地址 import uuid import socket def get_mac_address() ...
- python入门基础 02
目录 1.while 2.字符串格式化 3.运算符 4.编码初始 总结 1.while # while -- 关键字 (死循环) # # if 条件: # 结果 # # while 条件: # 循环体 ...
- Java 相等判断
==的判断机制是:根据两边的内存地址是否相同来判断. equals()是Object类的一个实例方法,判断机制和 == 完全一样. String类重写了equals()方法,是根据数据值来判断的. 总 ...
- 推荐一个去除图片人物背景的工具Removebg
可以在线使用,url:https://www.remove.bg/users/sign_in 用邮箱免注册一个免费账号: 注册的邮箱会收到一封激活账号的邮件: 点击Activate account后激 ...
- 使用虹软ArcFac,java 离线SDK 进行人脸识别
公司项目需要人脸识别登录,需要支持离线识别,所以无法使用在线的人脸识别的API,于是使用到了离线SDK来对比识别人脸相识度. 获取人脸抓拍的图片需要对接设备,这里不做记录,假设我们已经获取到了人脸图片 ...
- [LeetCode] 647. 回文子串 ☆☆☆(最长子串、动态规划、中心扩展算法)
描述 给定一个字符串,你的任务是计算这个字符串中有多少个回文子串. 具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被计为是不同的子串. 示例 1: 输入: "abc" ...
- Gitlab创建一个项目
1.安装git yum install git 2.生成密钥文件:使用ssh-keygen生成密钥文件.ssh/id_rsa.pub ssh-keygen 执行过程中输入密码,以及确认密码,并可设置密 ...
- php框架路由美化后提示No input file specified
此问题出现在.htaccess上 Apache按如下代码修改即可: RewriteEngine on RewriteCond %{REQUEST_FILENAME} !-d RewriteCond % ...