RCNN,Fast RCNN,Faster RCNN 的前生今世:(4) Fast RCNN 算法详解
继2014年的RCNN之后,Ross Girshick在15年推出Fast RCNN,构思精巧,流程更为紧凑,大幅提升了目标检测的速度。在Github上提供了源码。
同样使用最大规模的网络,Fast RCNN和RCNN相比,训练时间从84小时减少为9.5小时,测试时间从47秒减少为0.32秒。在PASCAL VOC 2007上的准确率相差无几,约在66%-67%之间.
思想
基础:RCNN
简单来说,RCNN使用以下四步实现目标检测:
a. 在图像中确定约1000-2000个候选框
b. 对于每个候选框内图像块,使用深度网络提取特征
c. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类
d. 对于属于某一特征的候选框,用回归器进一步调整其位置
Fast RCNN方法解决了RCNN方法三个问题:
问题一:测试时速度慢
RCNN一张图像内候选框之间大量重叠,提取特征操作冗余。
本文将整张图像归一化后直接送入深度网络。在邻接时,才加入候选框信息,在末尾的少数几层处理每个候选框。
问题二:训练时速度慢
原因同上。
在训练时,本文先将一张图像送入网络,紧接着送入从这幅图像上提取出的候选区域。这些候选区域的前几层特征不需要再重复计算。
问题三:训练所需空间大
RCNN中独立的分类器和回归器需要大量特征作为训练样本。
本文把类别判断和位置精调统一用深度网络实现,不再需要额外存储。
特征提取网络
基本结构
图像归一化为224×224直接送入网络。
前五阶段是基础的conv+relu+pooling形式,在第五阶段结尾,输入P个候选区域(图像序号×1+几何位置×4,序号用于训练)
注:文中给出了大中小三种网络,此处示出最大的一种。三种网络基本结构相似,仅conv+relu层数有差别,或者增删了norm层。
roi_pool层的测试(forward)
roi_pool层将每个候选区域均匀分成M×N块,对每块进行max pooling。将特征图上大小不一的候选区域转变为大小统一的数据,送入下一层
roi_pool层的训练(backward)
首先考虑普通max pooling层。设xi 为输入层的节点,yj 为输出层的节点。
其中判决函数δ(i,j)
表示i节点是否被j节点选为最大值输出。不被选中有两种可能:xi
不在yj
范围内,或者xi
不是最大值。
对于roi max pooling,一个输入节点可能和多个输出节点相连。设xi
为输入层的节点,yrj
为第r
个候选区域的第j
个输出节点。
判决函数δ(i,r,j)
表示i节点是否被候选区域r的第j个节点选为最大值输出。代价对于xi
的梯度等于所有相关的后一层梯度之和。
网络参数训练
参数初始化
网络除去末尾部分如下图,在ImageNet上训练1000类分类器。结果参数作为相应层的初始化参数。
其余参数随机初始化。
分层数据
在调优训练时,每一个mini-batch中首先加入N张完整图片,而后加入从N张图片中选取的R个候选框。这R个候选框可以复用N张图片前5个阶段的网络特征。
实际选择N=2, R=128。
训练数据构成
N张完整图片以50%概率水平翻转。
R个候选框的构成方式如下:
| 类别 | 比例 | 方式 |
|---|---|---|
| 前景 | 25% | 与某个真值重叠在[0.5,1]的候选框 |
| 背景 | 75% | 与真值重叠的最大值在[0.1,0.5)的候选框 |
分类与位置调整
数据结构
第五阶段的特征输入到两个并行的全连层中(称为multi-task)。
cls_score层用于分类,输出K+1维数组p
,表示属于K类和背景的概率。
bbox_prdict层用于调整候选区域位置,输出4*K维数组t
,表示分别属于K类时,应该平移缩放的参数。
代价函数
loss_cls层评估分类代价。由真实分类u
对应的概率决定:
loss_bbox评估检测框定位代价。比较真实分类对应的预测参数tu
和真实平移缩放参数为v
的差别:
g为Smooth L1误差,对outlier不敏感:
总代价为两者加权和,如果分类为背景则不考虑定位代价:
源码中bbox_loss_weights用于标记每一个bbox是否属于某一个类
全连接层提速
分类和位置调整都是通过全连接层(fc)实现的,设前一级数据为x
后一级为y
,全连接层参数为W
,尺寸u×v
。一次前向传播(forward)即为:
计算复杂度为u×v
。
将W
进行SVD分解,并用前t个特征值近似:
原来的前向传播分解成两步:
计算复杂度变为u×t+v×t
。
在实现时,相当于把一个全连接层拆分成两个,中间以一个低维数据相连。
在github的源码中,这部分似乎没有实现。
实验与结论
实验过程不再详述,只记录结论
- 网络末端同步训练的分类和位置调整,提升准确度
- 使用多尺度的图像金字塔,性能几乎没有提高
- 倍增训练数据,能够有2%-3%的准确度提升
- 网络直接输出各类概率(softmax),比SVM分类器性能略好
- 更多候选窗不能提升性能
RCNN,Fast RCNN,Faster RCNN 的前生今世:(4) Fast RCNN 算法详解的更多相关文章
- 第三十一节,目标检测算法之 Faster R-CNN算法详解
Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal network ...
- 第三十节,目标检测算法之Fast R-CNN算法详解
Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2 ...
- 【目标检测】Faster RCNN算法详解
Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal network ...
- 第二十九节,目标检测算法之R-CNN算法详解
Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmenta ...
- Java NIO 的前生今世 之四 NIO Selector 详解
Selector Selector 允许一个单一的线程来操作多个 Channel. 如果我们的应用程序中使用了多个 Channel, 那么使用 Selector 很方便的实现这样的目的, 但是因为在一 ...
- 揭秘 BPF map 前生今世
揭秘 BPF map 前生今世 本文地址:https://www.ebpf.top/post/map_internal 1. 前言 众所周知,map 可用于内核 BPF 程序和用户应用程序之间实现双向 ...
- 前后端分离,简单JWT登录详解
前后端分离,简单JWT登录详解 目录 前后端分离,简单JWT登录详解 JWT登录流程 1. 用户认证处理 2. 前端登录 3. 前端请求处理 4. 后端请求处理 5. 前端页面跳转处理 6. 退出登录 ...
- RCNN,Fast RCNN,Faster RCNN 的前生今世:(2) R- CNN (3,2,1)
3.三次IOU 2.2次model run 1,一次深度神经网络 rcnn主要作用就是用于物体检测,就是首先通过selective search 选择2000个候选区域,这些区域中有我们需要的所对 ...
- RCNN,Fast RCNN,Faster RCNN 的前生今世:(3) SPP - Net
SPP-Net是出自2015年发表在IEEE上的论文-<Spatial Pyramid Pooling in Deep ConvolutionalNetworks for Visual Reco ...
- 目标检测算法之Faster R-CNN算法详解
Fast R-CNN存在的问题:选择性搜索,非常耗时. 解决:加入一个提取边缘的神经网络,将候选框的选取交给神经网络. 在Fast R-CNN中引入Region Proposal Network(RP ...
随机推荐
- Centos下Redis集群的搭建实现读写分离
Centos下Redis一主多从架构搭建 搭建目标:因为自己笔记本电脑配置较低的原因,模拟两台机器之间搭建一主一从的架构,主节点Redis主要用来写数据,数据写入到主节点的Redis,然后从节点就可以 ...
- python 之 Django框架(路由系统、include、命名URL和URL反向解析、命名空间模式)
12.36 Django的路由系统 基本格式: from django.conf.urls import url urlpatterns = [ url(正则表达式, views视图函数,参数,别名) ...
- python基础 — 文件操作
读取键盘输入 Python提供了两个内置函数从标准输入读入一行文本,默认的标准输入是键盘.如下: raw_input input raw_input函数 raw_input([prompt]) 函数从 ...
- Create your first Java application
参考链接 -[IntelliJ IDEA] https://www.jetbrains.com/help/idea/creating-and-running-your-first-java-appli ...
- Redis之RDB和AOF持久化介绍
什么是数据库状态 redis是一个键值对的数据库服务器,服务器中通常包含中任意个非空的数据库,而每个数据库又可以包含任意个键值对,为了方便起见,我们将服务器中的非空数据库以及他们的键值对统称为数据库状 ...
- devextreme组装数据导出excel
$.get("", function (grid_dataSource) { var grid_config = dxConfig.grid(grid_dataSource); g ...
- CentOS 7 - 里面如何以root身份使用图形界面管理文件?
nautilus 是gnome的文件管理器,但是如果不是root账号下,权限受限,我们可以通过以下方式以root权限使用! 启动shll,随后在shell里面输入下面命令: sudo nautilus
- springboot整合tkmybatis
tkmybatis是什么? tkmybatis是为了简化mybatis单表的增删改查而诞生的,极其方便的使用MyBatis单表的增删改查,在使用mybatis单表增删改查时,可以直接调用tkmybat ...
- webpack4 从零学习常用配置梳理
webpack 的核心价值就是前端源码的打包,即将前端源码中每一个文件(无论任何类型)都当做一个 pack ,然后分析依赖,将其最终打包出线上运行的代码.webpack 的四个核心部分 entry 规 ...
- Swift面试题
class 和 struct 的区别 1.struct是值类型,class是引用类型. 值类型的变量直接包含它们的数据,对于值类型都有它们自己的数据副本,因此对一个变量操作不可能影响另一个变量. 引用 ...