RCNN,Fast RCNN,Faster RCNN 的前生今世:(4) Fast RCNN 算法详解
继2014年的RCNN之后,Ross Girshick在15年推出Fast RCNN,构思精巧,流程更为紧凑,大幅提升了目标检测的速度。在Github上提供了源码。
同样使用最大规模的网络,Fast RCNN和RCNN相比,训练时间从84小时减少为9.5小时,测试时间从47秒减少为0.32秒。在PASCAL VOC 2007上的准确率相差无几,约在66%-67%之间.
思想
基础:RCNN
简单来说,RCNN使用以下四步实现目标检测:
a. 在图像中确定约1000-2000个候选框
b. 对于每个候选框内图像块,使用深度网络提取特征
c. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类
d. 对于属于某一特征的候选框,用回归器进一步调整其位置
Fast RCNN方法解决了RCNN方法三个问题:
问题一:测试时速度慢
RCNN一张图像内候选框之间大量重叠,提取特征操作冗余。
本文将整张图像归一化后直接送入深度网络。在邻接时,才加入候选框信息,在末尾的少数几层处理每个候选框。
问题二:训练时速度慢
原因同上。
在训练时,本文先将一张图像送入网络,紧接着送入从这幅图像上提取出的候选区域。这些候选区域的前几层特征不需要再重复计算。
问题三:训练所需空间大
RCNN中独立的分类器和回归器需要大量特征作为训练样本。
本文把类别判断和位置精调统一用深度网络实现,不再需要额外存储。
特征提取网络
基本结构
图像归一化为224×224直接送入网络。
前五阶段是基础的conv+relu+pooling形式,在第五阶段结尾,输入P个候选区域(图像序号×1+几何位置×4,序号用于训练)
注:文中给出了大中小三种网络,此处示出最大的一种。三种网络基本结构相似,仅conv+relu层数有差别,或者增删了norm层。
roi_pool层的测试(forward)
roi_pool层将每个候选区域均匀分成M×N块,对每块进行max pooling。将特征图上大小不一的候选区域转变为大小统一的数据,送入下一层
roi_pool层的训练(backward)
首先考虑普通max pooling层。设xi 为输入层的节点,yj 为输出层的节点。
其中判决函数δ(i,j)
表示i节点是否被j节点选为最大值输出。不被选中有两种可能:xi
不在yj
范围内,或者xi
不是最大值。
对于roi max pooling,一个输入节点可能和多个输出节点相连。设xi
为输入层的节点,yrj
为第r
个候选区域的第j
个输出节点。
判决函数δ(i,r,j)
表示i节点是否被候选区域r的第j个节点选为最大值输出。代价对于xi
的梯度等于所有相关的后一层梯度之和。
网络参数训练
参数初始化
网络除去末尾部分如下图,在ImageNet上训练1000类分类器。结果参数作为相应层的初始化参数。
其余参数随机初始化。
分层数据
在调优训练时,每一个mini-batch中首先加入N张完整图片,而后加入从N张图片中选取的R个候选框。这R个候选框可以复用N张图片前5个阶段的网络特征。
实际选择N=2, R=128。
训练数据构成
N张完整图片以50%概率水平翻转。
R个候选框的构成方式如下:
类别 | 比例 | 方式 |
---|---|---|
前景 | 25% | 与某个真值重叠在[0.5,1]的候选框 |
背景 | 75% | 与真值重叠的最大值在[0.1,0.5)的候选框 |
分类与位置调整
数据结构
第五阶段的特征输入到两个并行的全连层中(称为multi-task)。
cls_score层用于分类,输出K+1维数组p
,表示属于K类和背景的概率。
bbox_prdict层用于调整候选区域位置,输出4*K维数组t
,表示分别属于K类时,应该平移缩放的参数。
代价函数
loss_cls层评估分类代价。由真实分类u
对应的概率决定:
loss_bbox评估检测框定位代价。比较真实分类对应的预测参数tu
和真实平移缩放参数为v
的差别:
g为Smooth L1误差,对outlier不敏感:
总代价为两者加权和,如果分类为背景则不考虑定位代价:
源码中bbox_loss_weights用于标记每一个bbox是否属于某一个类
全连接层提速
分类和位置调整都是通过全连接层(fc)实现的,设前一级数据为x
后一级为y
,全连接层参数为W
,尺寸u×v
。一次前向传播(forward)即为:
计算复杂度为u×v
。
将W
进行SVD分解,并用前t个特征值近似:
原来的前向传播分解成两步:
计算复杂度变为u×t+v×t
。
在实现时,相当于把一个全连接层拆分成两个,中间以一个低维数据相连。
在github的源码中,这部分似乎没有实现。
实验与结论
实验过程不再详述,只记录结论
- 网络末端同步训练的分类和位置调整,提升准确度
- 使用多尺度的图像金字塔,性能几乎没有提高
- 倍增训练数据,能够有2%-3%的准确度提升
- 网络直接输出各类概率(softmax),比SVM分类器性能略好
- 更多候选窗不能提升性能
RCNN,Fast RCNN,Faster RCNN 的前生今世:(4) Fast RCNN 算法详解的更多相关文章
- 第三十一节,目标检测算法之 Faster R-CNN算法详解
Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal network ...
- 第三十节,目标检测算法之Fast R-CNN算法详解
Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2 ...
- 【目标检测】Faster RCNN算法详解
Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal network ...
- 第二十九节,目标检测算法之R-CNN算法详解
Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmenta ...
- Java NIO 的前生今世 之四 NIO Selector 详解
Selector Selector 允许一个单一的线程来操作多个 Channel. 如果我们的应用程序中使用了多个 Channel, 那么使用 Selector 很方便的实现这样的目的, 但是因为在一 ...
- 揭秘 BPF map 前生今世
揭秘 BPF map 前生今世 本文地址:https://www.ebpf.top/post/map_internal 1. 前言 众所周知,map 可用于内核 BPF 程序和用户应用程序之间实现双向 ...
- 前后端分离,简单JWT登录详解
前后端分离,简单JWT登录详解 目录 前后端分离,简单JWT登录详解 JWT登录流程 1. 用户认证处理 2. 前端登录 3. 前端请求处理 4. 后端请求处理 5. 前端页面跳转处理 6. 退出登录 ...
- RCNN,Fast RCNN,Faster RCNN 的前生今世:(2) R- CNN (3,2,1)
3.三次IOU 2.2次model run 1,一次深度神经网络 rcnn主要作用就是用于物体检测,就是首先通过selective search 选择2000个候选区域,这些区域中有我们需要的所对 ...
- RCNN,Fast RCNN,Faster RCNN 的前生今世:(3) SPP - Net
SPP-Net是出自2015年发表在IEEE上的论文-<Spatial Pyramid Pooling in Deep ConvolutionalNetworks for Visual Reco ...
- 目标检测算法之Faster R-CNN算法详解
Fast R-CNN存在的问题:选择性搜索,非常耗时. 解决:加入一个提取边缘的神经网络,将候选框的选取交给神经网络. 在Fast R-CNN中引入Region Proposal Network(RP ...
随机推荐
- python技巧 — pip install 错误,超时
jieba库安装失败 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple jieba wordcloud库安装失败 pip instal ...
- 数据分析——matplotlib的用法
Matplotlib是一个强大的Python绘图和数据可视化的工具包.数据可视化也是我们数据分析的最重要的工作之一,可以帮助我们完成很多操作,例如:找出异常值.必要的一些数据转换等.完成数据分析的最终 ...
- TensorFlow学习笔记(1)—— 基本概念与框架
入门框架时的常见问题 学习框架的原因? 方便.易用 学习框架的哪些知识点? 掌握一个项目的基本流程,就知道需要学习哪些知识点了 迅速学习框架的方法 根据项目每块流程的需要针对性的学 可以看官方的入门教 ...
- tensorflow-简单的神经网络
本次笔记是关于tensorflow1的代码,由于接触不久没有跟上2.0版本,这个代码是通过简单的神经网络做一个非线性回归任务,(如果用GPU版本的话第一次出错就重启) import tensorflo ...
- docker postgres 导出导入数据
导出 -s 选项用来只导出表结构,而不会导出表中的数据 -t 选项用来指定要导出的数据库表 格式:docker exec -ti 容器名 pg_dump -U 用户名 -s -t table_n ...
- .net core使用ocelot---第五篇 服务质量
简介 .net core使用ocelot---第一篇 简单使用 .net core使用ocelot---第二篇 身份验证使用 .net core使用ocelot---第三篇 日志记录 .net c ...
- 1.1 文档PUT内部原理
文档更新原理: PUT 一条数据的时候,如果是全量替换,ES并不会覆盖原来的文档,而是新创建一个文档,并将version+1,原文档标记为deleted,不会立刻物理删除.ES会在集群的d ...
- Vue通过WebSocket建立长连接
使用场景: 在项目开发中,后端需要处理一连串的逻辑,或者等待第三方的数据返回来进行处理之后在返回给前端,可能时间会很长,而且前端也不知道后端什么时候能处理好(时间长的话会达到10分钟左右),如果采用普 ...
- Qt 子线程更新Ui
最近做练习,写一个Qt版的飞机大战,需要用子线程更新UI,发现Qt子线程不能更新Ui,否则程序会崩溃.在网上百度了下,说是需要在子线程自定义信号,然后在线程回调的run()函数里发射信号,主线程连接信 ...
- Jmeter学习笔记(十四)——逻辑控制器
一.逻辑控制器简单介绍 Jmeter中逻辑控制器(Logic Controllers)的作用域只对其子节点的sampler有效,作用是控制采样器的执行顺序.放在逻辑控制器下面的所有的采样器都会当做一个 ...