Description

Given a set of strings which just has lower case letters and a target string, output all the strings for each the edit distance with the target no greater than k.

You have the following 3 operations permitted on a word:

  • Insert a character
  • Delete a character
  • Replace a character

Example

Example 1:

Given words = `["abc", "abd", "abcd", "adc"]` and target = `"ac"`, k = `1`
Return `["abc", "adc"]`
Input:
["abc", "abd", "abcd", "adc"]
"ac"
1
Output:
["abc","adc"] Explanation:
"abc" remove "b"
"adc" remove "d"

Example 2:

Input:
["acc","abcd","ade","abbcd"]
"abc"
2
Output:
["acc","abcd","ade","abbcd"] Explanation:
"acc" turns "c" into "b"
"abcd" remove "d"
"ade" turns "d" into "b" turns "e" into "c"
"abbcd" gets rid of "b" and "d"

思路:滚动数组。用字典树对dfs进行优化。
class TrieNode{
public TrieNode[] sons;
public boolean isWord;
public String word; public TrieNode() {
int i;
sons = new TrieNode[26];
for (i = 0; i < 26; ++i) {
sons[i] = null;
} isWord = false;
} static public void Insert(TrieNode p, String word) {
int i;
char[] s = word.toCharArray();
for (i = 0; i < s.length; ++i) {
int c = s[i] - 'a';
if (p.sons[c] == null) {
p.sons[c] = new TrieNode();
} p = p.sons[c];
} p.isWord = true;
p.word = word;
}
} public class Solution {
/**
* @param words: a set of stirngs
* @param target: a target string
* @param k: An integer
* @return: output all the strings that meet the requirements
*/ int K;
int n;
char[] target;
List<String> res; // p is the current TrieNode
// f[] representss f[Sp][...]
void dfs(TrieNode p, int[] f) {
int[] newf;
int i;
if (p.isWord && f[n] <= K) {
res.add(p.word);
} for (int c = 0; c < 26; ++c) {
if (p.sons[c] == null) {
continue;
} // calc newf
newf = new int[n + 1];
// newf[...]: f[Sp + c][....] // newf[j] = Math.min(Math.min(f[j], newf[j-1]), f[j-1]) + 1;
for (i = 0; i <= n; ++i) {
newf[i] = f[i] + 1;
} for (i = 1; i <= n; ++i) {
newf[i] = Math.min(newf[i], f[i - 1] + 1);
} for (i = 1; i <= n; ++i) {
if (target[i - 1] - 'a' == c) {
newf[i] = Math.min(newf[i], f[i - 1]);
} newf[i] = Math.min(newf[i - 1] + 1, newf[i]);
} dfs(p.sons[c], newf);
}
} public List<String> kDistance(String[] words, String targets, int k) {
res = new ArrayList<String>();
K = k;
TrieNode root = new TrieNode();
int i;
for (i = 0; i < words.length; ++i) {
TrieNode.Insert(root, words[i]);
} target = targets.toCharArray();
n = target.length;
int[] f = new int[n + 1];
for (i = 0; i <= n; ++i) {
f[i] = i;
} dfs(root, f);
return res;
}
}

  

K Edit Distance的更多相关文章

  1. 动态规划 求解 Minimum Edit Distance

    http://blog.csdn.net/abcjennifer/article/details/7735272 自然语言处理(NLP)中,有一个基本问题就是求两个字符串的minimal Edit D ...

  2. Min Edit Distance

    Min Edit Distance ----两字符串之间的最小距离 PPT原稿参见Stanford:http://www.stanford.edu/class/cs124/lec/med.pdf Ti ...

  3. 利用编辑距离(Edit Distance)计算两个字符串的相似度

    利用编辑距离(Edit Distance)计算两个字符串的相似度 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可 ...

  4. Minimum edit distance(levenshtein distance)(最小编辑距离)初探

    最小编辑距离的定义:编辑距离(Edit Distance),又称Levenshtein距离.是指两个字串之间,由一个转成还有一个所需的最少编辑操作次数.许可的编辑操作包含将一个字符替换成还有一个字符. ...

  5. LeetCode解题报告—— N-Queens && Edit Distance

    1. N-Queens The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no ...

  6. LeetCode(72) Edit Distance

    题目 Given two words word1 and word2, find the minimum number of steps required to convert word1 to wo ...

  7. [LeetCode] One Edit Distance 一个编辑距离

    Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance ...

  8. [LeetCode] Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  9. Edit Distance

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

随机推荐

  1. 【flask】登陆后返回之前重定向跳转的页面

    登陆后返回之前重定向跳转的页面 一.前言 实现强制跳转到登陆页面,登陆后返回之前的页面的功能.网上跳登陆页面的很多:返回之前页面功能没多少.这里我只是用了自己的方法,有缺点和其他方法也请指点!(´ε` ...

  2. D03-R语言基础学习

    R语言基础学习——D03 20190423内容纲要: 1.导入数据 (1)从键盘输入 (2)从文本文件导入 (3)从excel文件导入 2.用户自定义函数   3.R访问MySQL数据库 (1)安装R ...

  3. SSH协议介绍

    SSH概念介绍 SSH是一种网络协议,我们常说的 ssh 一般指其实现,即 OpenSSH,在 shell 中,也就是 ssh 命令. Secure Shell(安全外壳协议,简称SSH)是一种加密的 ...

  4. mybatis 多个中间表查询映射

    最近项目用到中间表,则遇到如何联查映射的问题,之前一直都是一个表头,多个明细或者一对一这样的关系,没遇到这样的问题,所以趁机找了下资料解决了这个问题. 表结构设计如下: 主表: CREATE TABL ...

  5. C# vb .net实现HSL调整特效滤镜

    在.net中,如何简单快捷地实现Photoshop滤镜组中的HSL调整呢?答案是调用SharpImage!专业图像特效滤镜和合成类库.下面开始演示关键代码,您也可以在文末下载全部源码: 设置授权 第一 ...

  6. flutter 动画 practice

    import 'package:flutter/material.dart'; import 'dart:io'; import 'dart:async'; main() => runApp(M ...

  7. 如何获取jar包中resource下的文件

    maven工程打jar包,部署到服务器上以后,获取resource下文件的绝对路径是找不到该文件的 只能用流的方式获取,代码如下: import lombok.extern.slf4j.Slf4j; ...

  8. Anaconda-Jupyter notebook 如何安装 nbextensions

    系统环境:windows 安装过程中,再次遇到了一地鸡毛,经过不断查询方法,发现前辈大牛们好棒棒! Step1:确定是已经安装好anaconda Step2:要在anaconda prompt模式下运 ...

  9. Redhat下Oracle 12c单节点安装

    操作系统:Redhat6.7 64位[root@Oracle12CDB ~]# more /etc/redhat-release Red Hat Enterprise Linux Server rel ...

  10. oracle更改数据库字符集

    shutdown immediate; startup mount; alter system enable restricted session; alter system set job_queu ...