传送门

首先,有

\[x^{\overline n}=\sum_k\begin{bmatrix}{n\\ k}\end{bmatrix}x^{k}\\
\]

那么我们只需要求出\(x^{\overline n}\)即可,考虑倍增

\[x^{\overline 2n}=x^{\overline n}(x+n)^{\overline n}
\]

假设我们现在已经求出了\(x^{\overline n}\),考虑如何求出\((x+n)^{\overline n}\)

开始颓柿子

\[\begin{aligned}
f(x+n)
&=\sum_{i}f_i(x+n)^i\\
&=\sum_{j}x^j\sum_{i}f_i{i\choose j}n^{i-j}\\
&=\sum_{j}{x^j\over j!}\sum_{i}f_ii!{n^{i-j}\over (i-j)!}\\
\end{aligned}
\]

直接卷就可以了,再把它和原来的多项式卷积来即可

//quming
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
const int P=167772161;
inline void upd(R int &x,R int y){(x+=y)>=P?x-=P:0;}
inline int inc(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))(y&1)?res=mul(res,x):0;
return res;
}
const int N=(1<<19)+5;
int fac[N],ifac[N],lg[N],r[25][N],rt[2][N],inv[25];
int lim,d;
inline void swap(R int &x,R int &y){R int t=x;x=y,y=t;}
inline int C(R int n,R int m){return m>n?0:1ll*fac[n]*ifac[m]%P*ifac[n-m]%P;}
void init(){
fac[0]=ifac[0]=1;fp(i,1,262144)fac[i]=mul(fac[i-1],i);
ifac[262144]=ksm(fac[262144],P-2);fd(i,262143,1)ifac[i]=mul(ifac[i+1],i+1);
fp(d,1,19){
fp(i,1,(1<<d)-1)r[d][i]=(r[d][i>>1]>>1)|((i&1)<<(d-1));
inv[d]=ksm(1<<d,P-2),lg[1<<d]=d;
}
for(R int t=(P-1)>>1,i=1,x,y;i<=262144;i<<=1,t>>=1){
x=ksm(3,t),y=ksm(55924054,t),rt[0][i]=rt[1][i]=1;
fp(k,1,i-1)
rt[1][i+k]=mul(rt[1][i+k-1],x),
rt[0][i+k]=mul(rt[0][i+k-1],y);
}
}
void NTT(int *A,int ty){
fp(i,0,lim-1)if(i<r[d][i])swap(A[i],A[r[d][i]]);
R int t;
for(R int mid=1;mid<lim;mid<<=1)
for(R int j=0;j<lim;j+=(mid<<1))
fp(k,0,mid-1)
A[j+k+mid]=dec(A[j+k],t=mul(rt[ty][mid+k],A[j+k+mid])),
A[j+k]=inc(A[j+k],t);
if(!ty){
t=inv[d];
fp(i,0,lim-1)A[i]=mul(A[i],t);
}
}
int f[N],n;
void solve(int *b,int len){
if(!len)return b[0]=1,void();
solve(b,len>>1);
lim=1,d=0;while(lim<=len)lim<<=1,++d;
int dm=(len>>1);
static int A[N],B[N];
for(R int i=0,c=1;i<=dm;++i,c=mul(c,dm))A[i]=mul(c,ifac[i]);
fp(i,0,dm)B[dm-i]=mul(b[i],fac[i]);
fp(i,dm+1,lim-1)A[i]=B[i]=0;
NTT(A,1),NTT(B,1);
fp(i,0,lim-1)A[i]=mul(A[i],B[i]);
NTT(A,0);
reverse(A,A+dm+1);
fp(i,0,dm)A[i]=mul(A[i],ifac[i]);fp(i,dm+1,lim-1)A[i]=0;
fp(i,0,dm)B[i]=b[i];fp(i,dm+1,lim-1)B[i]=0;
NTT(A,1),NTT(B,1);
fp(i,0,lim-1)A[i]=mul(A[i],B[i]);
NTT(A,0);
fp(i,0,len)b[i]=A[i];
if(len&1){
fd(i,len,1)b[i]=inc(mul(b[i],len-1),b[i-1]);
b[0]=mul(b[0],len-1);
}
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d",&n);
init();
solve(f,n);
fp(i,0,n)printf("%d ",f[i]);
return 0;
}

洛谷 P5408 【模板】第一类斯特林数·行的更多相关文章

  1. Luogu P5408 【模板】第一类斯特林数·行

    为什么要做这题呢,当然是有用啊qwq 首先我们考虑非常经典的式子: \[x^{\overline{n}}=\sum_i \left[^n_i\right] x^i\] 然后上倍增: \[x^{\ove ...

  2. 洛谷P4609 [FJOI2016]建筑师 【第一类斯特林数】

    题目链接 洛谷P4609 题解 感性理解一下: 一神带\(n\)坑 所以我们只需将除了\(n\)外的\(n - 1\)个元素分成\(A + B - 2\)个集合,每个集合选出最大的在一端,剩余进行排列 ...

  3. 洛谷P4609 [FJOI2016]建筑师(第一类斯特林数+组合数)

    题面 洛谷 题解 (图片来源于网络,侵删) 以最高的柱子\(n\)为分界线,我们将左边的一个柱子和它右边的省略号看作一个圆排列,右边的一个柱子和它左边的省略号看作一个圆排列,于是,除了中间的最高的柱子 ...

  4. 题解 P5320 - [BJOI2019]勘破神机(推式子+第一类斯特林数)

    洛谷题面传送门 神仙题(为什么就没能自己想出来呢/zk/zk) 这是我 AC 的第 \(2\times 10^3\) 道题哦 首先考虑 \(m=2\) 的情况,我们首先可以想到一个非常 trivial ...

  5. 【CF715E】Complete the Permutations(容斥,第一类斯特林数)

    [CF715E]Complete the Permutations(容斥,第一类斯特林数) 题面 CF 洛谷 给定两个排列\(p,q\),但是其中有些位置未知,用\(0\)表示. 现在让你补全两个排列 ...

  6. 【CF960G】Bandit Blues(第一类斯特林数,FFT)

    [CF960G]Bandit Blues(第一类斯特林数,FFT) 题面 洛谷 CF 求前缀最大值有\(a\)个,后缀最大值有\(b\)个的长度为\(n\)的排列个数. 题解 完完全全就是[FJOI] ...

  7. 【Luogu4609】建筑师(第一类斯特林数,组合数学)

    [Luogu4609]建筑师(组合数学) 题面 洛谷 题解 首先发现整个数组一定被最高值切成左右两半,因此除去最高值之后在左右分开考虑. 考虑一个暴力\(dp\) ,设\(f[i][j]\)表示用了\ ...

  8. Codeforces 715E - Complete the Permutations(第一类斯特林数)

    Codeforces 题面传送门 & 洛谷题面传送门 神仙题.在 AC 此题之前,此题已经在我的任务计划中躺了 5 个月的灰了. 首先考虑这个最短距离是什么东西,有点常识的人(大雾)应该知道, ...

  9. 如何快速求解第一类斯特林数--nlog^2n + nlogn

    目录 参考资料 前言 暴力 nlog^2n的做法 nlogn的做法 代码 参考资料 百度百科 斯特林数 学习笔记-by zhouzhendong 前言 首先是因为这道题,才去研究了这个玩意:[2019 ...

随机推荐

  1. 怎样调节Eclipse中的字体大小?

    window->perference->appearance->colors and font->text font edit

  2. C#写入Excel文件方式

    由于在工作中经常要把数据库的统计数据导入Excel文件,进行IO磁盘操作,所以在这里记录下. 首先创建默认文件夹,并返回文件夹路径. private static string CPath(strin ...

  3. kubernetes(k8s)集群安装calico

    添加hosts解析 cat /etc/hosts 10.39.7.51 k8s-master-51 10.39.7.57 k8s-master-57 10.39.7.52 k8s-master-52 ...

  4. Docker 多终端登录

    版权声明:starRTC免费im直播会议一对一视频,by elesos.com & starRTC.com https://blog.csdn.net/elesos/article/detai ...

  5. javascript原型深入解析1-prototype 和原型链、js面向对象

    1.用prototype 封装类 创建的每个函数都有一个prototype(原型属性),他是个指针,指向的对象,这个对象的用途就是包含了这个类型所有实例共享的属性和方法. 回味这句,想想java或者C ...

  6. PyTorch 安装 报错,原因是pip 不是64位的。

    原因: import pip._internal print(pip._internal.pep425tags.get_supported()) 换位64位的python版本. import pip. ...

  7. EnumSet详细讲解

    https://blog.csdn.net/tugangkai/article/details/89631886 之前介绍的Set接口的实现类HashSet/TreeSet,它们内部都是用对应的Has ...

  8. 医疗行业预测性产品的质量如何把关?MES系统帮大忙

    作为行业细分的医疗设备制造正在向工业4.0快速发展.它也可能仍然是世界上受监管最严格的行业之一,产品的个性化发展速度比其他行业更快. 在医疗设备行业中,由于需求或由于市场特定的规定,产品越来越多地定制 ...

  9. Android Studio 导入 Android 系统模块并编译和调试

    FAQ: AS导入系统模块源码,并且能够编译调试,正常查看java doc ???? Android AOSP基础(五)Android Studio调试系统源码的三种方式http://liuwangs ...

  10. Django 配置mysql遇到问题(一)

    问题一: django.core.exceptions.ImproperlyConfigured: mysqlclient 1.3.13 or newer is required; you have ...