USACO Milk Routing
洛谷 P3063 [USACO12DEC]牛奶的路由Milk Routing
JDOJ 2334: USACO 2012 Dec Silver 3.Milk Routing
Description
Problem 3: Milk Routing [Brian Dean, 2012]
Farmer John's farm has an outdated network of M pipes (1 <= M <= 500) for
pumping milk from the barn to his milk storage tank. He wants to remove
and update most of these over the next year, but he wants to leave exactly
one path worth of pipes intact, so that he can still pump milk from the
barn to the storage tank.
The pipe network is described by N junction points (1 <= N <= 500), each of
which can serve as the endpoint of a set of pipes. Junction point 1 is the
barn, and junction point N is the storage tank. Each of the M
bi-directional pipes runs between a pair of junction points, and has an
associated latency (the amount of time it takes milk to reach one end of
the pipe from the other) and capacity (the amount of milk per unit time
that can be pumped through the pipe in steady state). Multiple pipes
can connect between the same pair of junction points.
For a path of pipes connecting from the barn to the tank, the latency
of the path is the sum of the latencies of the pipes along the path,
and the capacity of the path is the minimum of the capacities of the
pipes along the path (since this is the "bottleneck" constraining the
overall rate at which milk can be pumped through the path). If FJ
wants to send a total of X units of milk through a path of pipes with
latency L and capacity C, the time this takes is therefore L + X/C.
Given the structure of FJ's pipe network, please help him select a single
path from the barn to the storage tank that will allow him to pump X units
of milk in a minimum amount of total time.
Input
* Line 1: Three space-separated integers: N M X (1 <= X <= 1,000,000).
* Lines 2..1+M: Each line describes a pipe using 4 integers: I J L C.
I and J (1 <= I,J <= N) are the junction points at both ends
of the pipe. L and C (1 <= L,C <= 1,000,000) give the latency
and capacity of the pipe.
Output
* Line 1: The minimum amount of time it will take FJ to send milk
along a single path, rounded down to the nearest integer.
Sample Input
3 3 15 1 2 10 3 3 2 10 2 1 3 14 1
Sample Output
27
HINT
INPUT DETAILS:
FJ wants to send 15 units of milk through his pipe network. Pipe #1
connects junction point 1 (the barn) to junction point 2, and has a latency
of 10 and a capacity of 3. Pipes #2 and #3 are similarly defined.
OUTPUT DETAILS:
The path 1->3 takes 14 + 15/1 = 29 units of time. The path 1->2->3 takes
20 + 15/2 = 27.5 units of time, and is therefore optimal.
题目翻译:
农民约翰的农场有一套老旧的管网,管网由M条管道(1<=M<=500)构成,用于将牛奶从谷仓运到储奶罐。 他想在明年移除和更新大部分管道,但他想原封不动地保留一条完整的路径,这样他仍然可以把牛奶从谷仓输送到储罐。
管网由N个节点(1<=N<=500)组成,每个点都可以作为一组管道的端点。结点1是谷仓,结点N是储罐。M条双向管道中的每一条都连接一对节点,并且都有一个延迟值(牛奶达到管的另一端的用时)和容量值(单位时间内可以稳定通过管道的牛奶量)。多条管道可以连接同一对节点。
对于一条连接谷仓与储罐的路径,路径的延迟等于沿途所有管道的延迟之和,路径的容量等于沿途管道最小的容量(因为这是制约牛奶运送的“瓶颈”)。如果约翰通过一条延迟为L、容量为C的管道运送X个单位的牛奶,需要的时间为L+X/C。
给出约翰的管网结构,请帮助他选择一条路径,使得他从谷仓到储罐运送X个单位牛奶的总时间最少。
题解:
一道图论中的最短路变形题目。
我的题意又理解错了,不要以为是单纯的松弛时间就可以了。这道题的坑点在于,你的一条路径的时间计算中的C其实是整条路径的C的最小值。
所以我们就不能直接拍板子了。
那我们怎么解决跑最短路的时候还能维护时间呢?
直观一点想,我们在每次松弛的时候可以维护一个可行的最短时间。
所以我们就想到了,能不能在SPFA的模板中加一个参数,使得它能够不断地被更新,达到松弛时间的目的呢?
我们可以实现,具体方式是新开一个数组,然后保存每条边的需要时间,最后枚举和跑SPFA的时候直接按这个时间枚举即可。
代码:
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cstring>
#pragma GCC optimize(2)
using namespace std;
int n,m,t,ans=1e9;
int tot,to[1001],vall[1001],valc[1001],nxt[1001],head[501],c[501];
int f[501];
bool v[501];
inline int read(){
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
return s*w;
}
void add(int x,int y,int zl,int zc)
{
to[++tot]=y;
vall[tot]=zl;
valc[tot]=zc;
nxt[tot]=head[x];
head[x]=tot;
}
void spfa(int w)
{
memset(f,0x3f,sizeof(f));
memset(v,0,sizeof(v));
queue<int> q;
q.push(1);
v[1]=1;
f[1]=0;
while(!q.empty())
{
int x=q.front();
q.pop();
v[x]=0;
for(int i=head[x];i;i=nxt[i])
{
int y=to[i];
if(f[y]>f[x]+vall[i] && valc[i]>=w)
{
f[y]=f[x]+vall[i];
if(v[y]==0)
{
q.push(y);
v[y]=1;
}
}
}
}
}
int main()
{
n=read();
m=read();
t=read();
for(int i=1;i<=m;i++)
{
int x,y,zl,zc;
x=read();
y=read();
zl=read();
zc=read();
add(x,y,zl,zc);
add(y,x,zl,zc);
c[i]=zc;
}
for(int i=1;i<=m;i++)
{
spfa(c[i]);
ans=min(ans,f[n]+t/c[i]);
}
printf("%d",ans);
return 0;
}
USACO Milk Routing的更多相关文章
- USACO Milk Routing /// 优先队列广搜
题目大意: 在n个点 m条边的无向图中 需要运送X单位牛奶 每条边有隐患L和容量C 则这条边上花费时间为 L+X/C 求从点1到点n的最小花费 优先队列维护 L+X/C 最小 广搜到点n #inclu ...
- 洛谷 P3063 [USACO12DEC]牛奶的路由Milk Routing
P3063 [USACO12DEC]牛奶的路由Milk Routing 题目背景 征求翻译.如果你能提供翻译或者题意简述,请直接发讨论,感谢你的贡献. 题目描述 Farmer John's farm ...
- Milk Pumping G&Milk Routing S 题解
Milk Pumping G&Milk Routing S 双倍经验时间 洛谷P5837 [USACO19DEC]Milk Pumping G 洛谷P3063 [USACO12DEC]Milk ...
- USACO milk
/* ID:kevin_s1 PROG:milk LANG:C++ */ #include <iostream> #include <string> #include < ...
- 【luogu P3063 [USACO12DEC]牛奶的路由Milk Routing】 题解
题目链接:https://www.luogu.org/problemnew/show/P3063#sub 我很好奇这道题为什么没被收入SPFA好题 #include <cstdio> #i ...
- 洛谷P3063 [USACO12DEC]牛奶的路由Milk Routing
链接 其实在博客园里写题解都挺应付的都是在洛谷写了之后 挑一部分粘过来 在洛谷写的也都是废话,是为了凑篇幅 主要就是代码 大体思路就一提 这题贪心不行废话 跑m遍SPFA更新最小值 注意数组记得清空 ...
- 洛谷 P3063 【[USACO12DEC]Milk Routing S】
这道题可以暴力哒~ 我们枚举每一个出现过的容量,然后跑一次最短路,求延迟,在跑最短路的时候,如果遇到的某一个点,比我们当前枚举的那个点小,那么就直接不走这一个点,然后枚举完后,就能得到最大值了. 代码 ...
- Mixing Milk 混合牛奶 USACO 贪心
1009: 1.3.1 Mixing Milk 混合牛奶 时间限制: 1 Sec 内存限制: 128 MB提交: 9 解决: 9[提交] [状态] [讨论版] [命题人:外部导入] 题目描述 1. ...
- 【BZOJ】【1717】【USACO 2006 Dec】Milk Patterns产奶的模式
后缀数组 o(︶︿︶)o 唉傻逼了一下,忘了把后缀数组的字典范围改回20001,直接21交了上去,白白RE了两发……sigh 既然要找出现了K次的子串嘛,那当然要用后缀数组了>_>(因为我 ...
随机推荐
- oracle--DG监控脚本
conn sys@oracle01 as sysdba column dest_name format a30 column destination format a20 column MEMBER ...
- HTML+css基础 表格标签table Table标签属性 td标签属性
表格标签table: 他是由行与列构成,最小单位是单元格. 行标签 <tr></tr> 单元格标签<td></td> Table标签属性: Bor ...
- c++小学期大作业攻略(二)整体思路+主界面
写在前面:如果我曾经说过要在第一周之内写完大作业,那……肯定是你听错了.不过如果我在写的时候有攻略看的话应该可以轻松地在4~5天内做完,然后觉得写攻略的人是个小天使吧(疯狂暗示).出于给大家自由发挥的 ...
- Balking模式
Balking模式讲的是如果现在不合适执行这个操作,或者没必要执行这个操作,就停止处理,直接返回 自动保存功能的实现逻辑一般都是隔一定时间自动执行存盘操作,存盘操作的前提是文件做过修改,如果文件没有执 ...
- 027 奥展项目涉及的javascipt知识点笔记
1.获取指定div标签内的所有input标签 let inputs = document.getElementById("inspect-part1").getElementsBy ...
- 前端学习:学习笔记(HTML部分)
前端学习:学习笔记(HTML部分) HTML学习总结(图解) HTML简介 1.HTML是什么? 超文本标记语言 超文本:文字/图片/音频/视频.... 标记/标签 2.HTML的用途? 是用来编写静 ...
- 2019-11-29-WPF-高性能笔
原文:2019-11-29-WPF-高性能笔 title author date CreateTime categories WPF 高性能笔 lindexi 2019-11-29 10:20:51 ...
- SqlServer简单的操作XML以及SQl的 try catch等统一格式
1:SqlServer简单的操作XML: ALTER PROCEDURE [dbo].[SP_CRM_FranchiseeRecharge_Money] @Create_By VARCHAR(), @ ...
- MAC电脑卸载Jenkins
终端输入下面命令 '/Library/Application Support/Jenkins/Uninstall.command' zudeMoPro:~ zhu$ '/Library/Applica ...
- javascript DOM中的节点层次和节点类型概述
针对JS高级程序设计这本书,主要是理解概念,大部分要点源自书内.写这个主要是当个笔记加总结 存在的问题请大家多多指正! 因为DOM这方面的对象方法操作性都特别强,但是逻辑很简单,所以就没有涉及到实际的 ...