CF573E Bear and Bowling 贪心、分块、凸包
题解搬运工++
先证明一个贪心做法的正确性:做以下操作若干次,每一次考虑选择没有被选到答案序列中的数加入到答案序列中对答案的贡献,设第\(i\)个位置的贡献为\(V_i\),如果最大的贡献小于0则退出,否则选择其中贡献最大的加入答案序列中。
首先一个引理:在上述贪心策略下,如果\(a_i\)>\(a_j\)且\(i\)<\(j\),则选\(i\)之前不可能选\(j\)。
证明考虑对 \(i,j\) 中间选中的元素的数量归纳:\(i,j\) 中间不存在被选中的元素时是平凡的,如果 \(i,j\) 中间存在 \(p\) 个选中的元素且 \(V_i\)<\(V_j\),则一定在 \([i,j]\) 间存在至少一个被选中的元素 \(x\) 满足 \(a_x\)<\(a_i\),根据归纳在选 \(i\) 之前不可能选 \(x\),矛盾,故不可能存在这样的 \(x\),所以 \(V_i\) > \(V_j\),QED。
接下来假设贪心策略不正确,即在选择了集合\(A\)之后将下标为\(x\)的位置选中,但是最优的答案是选择集合\(A+B\),其中\(x \not\in B\)。那么考虑:
1、如果\(B\)中存在位置在x左边,考虑在\(x\)左边的最右位置\(y\),那么此时有\(a_y \leq a_x , V_x \geq V_y\)。此时加入集合\(B\)中的其他元素考虑\(V_x,V_y\)的变化,那么在\(x\)右边的元素对\(V_x,V_y\)的贡献一样,在\(y\)左边的元素对\(V_x,V_y\)的贡献是\(a_x,a_y\),而\(x,y\)中间没有在\(B\)中的元素,所以可以发现在其他元素加入之后\(V_x \geq V_y\),所以将\(B\)中\(y\)换成\(x\)结果不劣。
2、如果\(B\)中只有在\(x\)右边的元素,考虑在\(x\)右边的最左位置\(y\),那么\(B\)集合其他的元素对\(V_x,V_y\)的贡献是一样的,所以把\(y\)换成\(x\)也不会更劣。
故上述假设不成立,贪心正确性证毕。
那么我们考虑选择了一个元素之后对答案的影响。假如选择了位置\(x\),那么当\(y < x\)时,\(V_y += x\);当\(y > x\)时,\(V_y += a_y\)。那么每一个时刻\(V_y\)都可以表示成\(ka_y+b\)的形式,用分块维护凸包即可。
#include<cstdio>
#include<cstring>
#include<iomanip>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<bitset>
#include<random>
#include<unistd.h>
//This code is written by Itst
using namespace std;
#define int long long
#define PII pair < int , int >
#define ld long double
const int _ = 1e5 + 7 , T = sqrt(_) + 5;
int arr[_] , add[_] , mrk[T] , id[_] , N;
ld sect(PII p , PII q){return 1.0 * (q.second - p.second) / (p.first - q.first);}
int calc(PII p , int q){return p.first * q + p.second;}
struct Hull{
deque < PII > q; int mrk;
int get(){while(q.size() >= 2 && calc(q[0] , mrk) <= calc(q[1] , mrk)) q.pop_front(); return calc(q[0] , mrk);}
void up(){++mrk;}
void rebuild(int bl){
q.clear(); mrk = 0;
for(int i = bl * T ; i < N && i < (bl + 1) * T ; ++i){
PII now(arr[id[i]] , add[id[i]]);
if(q.size() && q.back().first == now.first)
if(q.back().second > now.second) continue;
else q.pop_back();
while(q.size() >= 2 && sect(q[q.size() - 2] , now) < sect(q[q.size() - 2] , q[q.size() - 1])) q.pop_back();
q.push_back(now);
}
}
}now[T];
void down(int bl){
for(int i = T * bl ; i < N && i < (bl + 1) * T ; ++i)
add[i] += now[bl].mrk * arr[i] + mrk[bl];
mrk[bl] = 0;
}
signed main(){
scanf("%lld" , &N);
for(int i = 0 ; i < N ; ++i){scanf("%lld" , &arr[id[i] = i]); add[i] = arr[i];}
for(int i = 0 ; i < N ; i += T){
sort(id + i , id + min(T + i , N) , [&](int p , int q){return arr[p] < arr[q];});
now[i / T].rebuild(i / T);
}
int sum = 0;
while(1){
int mx = -1e18 , id = -1;
for(int i = 0 ; i < N / T + (bool)(N % T) ; ++i) if(mx < now[i].get() + mrk[i]){mx = now[i].get() + mrk[i]; id = i;}
if(mx < 0) break;
sum += mx; down(id);
for(int i = T * id ; i < (id + 1) * T ; ++i)
if(add[i] == mx){
for(int j = 0 ; j < id ; ++j) mrk[j] += arr[i];
for(int j = id + 1 ; j < N / T + (bool)(N % T) ; ++j) now[j].up();
for(int j = T * id ; j < i ; ++j) add[j] += arr[i];
add[i] = -1e15;
for(int j = i + 1 ; j < N && j < (id + 1) * T ; ++j) add[j] += arr[j];
now[id].rebuild(id);
break;
}
}
printf("%lld\n" , sum); return 0;
}
CF573E Bear and Bowling 贪心、分块、凸包的更多相关文章
- CF573E Bear and Bowling(6-1)
题意 洛谷 做法一 考虑一种贪心(先别管对不对),设当前已选择的集合为\(A\),这是考虑该集合的补集,每个元素加进来后的增量为\(V_i\),则挑选最大的那个加入该集合 结论1:遵循上述贪心,\(\ ...
- CF573E Bear and Bowling
题目 我们设\(f_{i,j}\)表示前\(i\)个数中选\(j\)个的最大值. 那么显然有\(f_{i,j}=max(f_{i-1,j},f_{i-1,j-1}+j*a_i)\). 这个东西我们首先 ...
- 【CF573E】Bear and Bowling
[CF573E]Bear and Bowling 题面 洛谷 题解 首先有一个贪心的结论: 我们一次加入每个数,对于\(\forall i\),位置\(i\)的贡献为\(V_i = k_i\times ...
- Codeforces 660F Bear and Bowling 4 斜率优化 (看题解)
Bear and Bowling 4 这也能斜率优化... max[ i ] = a[ i ] - a[ j ] - j * (sum[ i ] - sum[ j ])然后就能斜率优化啦, 我咋没想到 ...
- CodeForces - 660F:Bear and Bowling 4(DP+斜率优化)
Limak is an old brown bear. He often goes bowling with his friends. Today he feels really good and t ...
- BZOJ 2388: 旅行规划 [分块 凸包 等差数列]
传送门 题意: 区间加和询问一段区间内整体前缀和的最大值 刚才还在想做完这道题做一道区间加等差数列结果发现这道就是.... 唯一的不同在于前缀和一段区间加上等差数列后,区间后面也要加上一个常数!!! ...
- 2019.01.20 bzoj2388: 旅行规划(分块+凸包)
传送门 分块好题. 题意:维护区间加,维护区间前缀和的最大值(前缀和指从1开始的). 思路: 考虑分块维护答案. 我们把每个点看成(i,sumi)(i,sum_i)(i,sumi)答案一定会在凸包上 ...
- bzoj2388(分块 凸包)
好像没有什么高级数据结构能够很高效地实现这个东西: 那就上万能的分块,我们用一些数形结合的思想,把下标看成横坐标,前缀和的值看成纵坐标: 给区间内每个数都加k相当于相邻两点的斜率都加上k: 这种东西我 ...
- 2018.09.17 atcoder Tak and Hotels(贪心+分块)
传送门 一道有意思的题. 一开始想错了,以为一直lowerlowerlower_boundboundbound就可以解决询问,结果交上去TLE了之后才发现时间复杂度是错的. 但是贪心思想一定是对的,每 ...
随机推荐
- Linux shell简单创建用户脚本
前面介绍简单的shell编写规则. 现在开始编写一个简单的shell脚本. Linux shell介绍 编写shell脚本 1.创建脚本文件 2.根据需求,编写脚本 3.测试执行脚本 ...
- Linux Tomcat安装及端口配置
1. JDK安装配置 待写 2. Tomcat安装配置 1,下载Tomcat链接,到启动测试. 将文件apache-tomcat-8.5.50.tar.gz移动到/usr/tomcat/下,并解压 ...
- 让天堂的归天堂,让尘土的归尘土——谈Linux的总线、设备、驱动模型
本文系转载,著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 作者: 宋宝华 来源: 微信公众号linux阅码场(id: linuxdev) 公元1951年5月15日的国会听证上, ...
- 代数&数论趣题集萃
暑假总不能只学习平面几何.所以这里也收集一些有趣的代数题或数论题,同时记下解法的一些提示.给未来的自己复习参考用. 多图片预警(请注意流量) 目录: Part 0:其他(8) Part 1:不等式(1 ...
- Python input() 函数
Python3.x 中 input() 函数接受一个标准输入数据,返回为 string 类型. Python2.x 中 input() 相等于 eval(raw_input(prompt)) ,用来获 ...
- Ubuntu18.04安装redis-server启动出错
虽然报错原因可能是 redis-server.service: Can't open PID file /var/run/redis/re Aug 26 15:43:25 iZ2ze6ddwhet60 ...
- [POJ1087]A Plug for UNIX
题目描述 Description You are in charge of setting up the press room for the inaugural meeting of the Uni ...
- 07_LACP负载分担(数通华为)
1. 网络拓扑 2. SW1配置:[SW1]vlan batch 10 20[SW1]interface GigabitEthernet 0/0/1[SW1-GigabitEthernet0/0/1] ...
- Shell编程——多命令顺序执行、管道、grep命令
1.多命令执行符: (1)命令1:命令2 多个命令顺序执行,没有逻辑联系,即使命令1出错,命令2依旧执行. (2)命令1&&命令2:只有命令1正确执行,命令2才能正确执行:命令1 ...
- Struts CRUD
Struts CRUD 利用struts完成增删改查 思路: 1.导入相关的pom依赖(struts.自定义标签库的依赖) 2.分页的tag类导入.z.tld.完成web.xml的配置 3.dao层去 ...