二次联通门 : LibreOJ #108. 多项式乘法

/*
LibreOJ #108. 多项式乘法 FFT板子题
不行啊。。。跑的还是慢 应该找个机会学一学由乃dalao的fft
或者是毛爷爷的fft,跑的真是快啊。。。
*/
#include <cstdio>
#include <iostream>
#include <cmath> const int BUF = ;
char Buf[BUF], *buf = Buf; inline void read (int &now)
{
for (now = ; !isdigit (*buf); ++ buf);
for (; isdigit (*buf); now = now * + *buf - '', ++ buf);
}
using std :: swap;
#define Max 3000000
typedef double flo;
struct Vec
{
flo r, i; Vec () {}
Vec (flo x, flo y) : r (x), i (y) {}
Vec operator * (const Vec &b) const
{ return Vec (r * b.r - i * b.i, r * b.i + i * b.r); }
Vec operator * (const flo &k) const
{ return Vec (r * k, i * k); }
Vec operator + (const Vec &b) const
{ return Vec (r + b.r, i + b.i); }
Vec operator - (const Vec &b) const
{ return Vec (r - b.r, i - b.i); }
Vec& operator /= (const flo &k)
{ return r /= k, i /= k, *this; }
}; Vec a[Max], b[Max];
int N, M, Maxn, rader[Max];
const flo PI = acos (-); void FFT (Vec *a, int N, int f = )
{
register int i, j, k;
for (i = ; i < N; ++ i)
if (rader[i] > i) swap (a[i], a[rader[i]]);
for (k = ; k < N; k <<= )
{
Vec wn (cos (PI / k), f * sin (PI / k));
for (j = ; j < N; j += k << )
{
Vec w (, ), t;
for (i = j; i < j + k; ++ i, w = w * wn)
{
t = w * a[i + k];
a[i + k] = a[i] - t;
a[i] = a[i] + t;
}
}
}
if (f == -)
for (i = ; i < N; ++ i) a[i] /= N;
} int Main ()
{
fread (buf, , BUF, stdin);
read (N), read (M); register int i; int x;
++ N, ++ M, Maxn = << int (ceil (log2 (N + M)));
for (i = ; i < N; ++ i) read (x), a[i].r = x;
for (i = ; i < M; ++ i) read (x), b[i].r = x; for (i = ; i < Maxn; ++ i)
rader[i] = rader[i >> ] >> | (i & ) * (Maxn >> );
FFT (a, Maxn), FFT (b, Maxn);
for (i = ; i < Maxn; ++ i)
a[i] = a[i] * b[i];
N = N + M - ;
for (FFT (a, Maxn, -), i = ; i <= N; ++ i)
printf ("%d ", int (round (a[i].r)));
return ;
}
int ZlycerQan = Main ();
int main (int argc, char *argv[]) {;}

LibreOJ #108. 多项式乘法的更多相关文章

  1. loj #108. 多项式乘法

    #108. 多项式乘法   题目描述 这是一道模板题. 输入两个多项式,输出这两个多项式的乘积. 输入格式 第一行两个整数 n nn 和 m mm,分别表示两个多项式的次数. 第二行 n+1 n + ...

  2. [UOJ#34]多项式乘法

    [UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多 ...

  3. [笔记]ACM笔记 - 利用FFT求卷积(求多项式乘法)

    卷积 给定向量:, 向量和: 数量积(内积.点积): 卷积:,其中 例如: 卷积的最典型的应用就是多项式乘法(多项式乘法就是求卷积).以下就用多项式乘法来描述.举例卷积与DFT. 关于多项式 对于多项 ...

  4. FFT模板(多项式乘法)

    FFT模板(多项式乘法) 标签: FFT 扯淡 一晚上都用来捣鼓这个东西了...... 这里贴一位神犇的博客,我认为讲的比较清楚了.(刚好适合我这种复数都没学的) http://blog.csdn.n ...

  5. 【Uoj34】多项式乘法(NTT,FFT)

    [Uoj34]多项式乘法(NTT,FFT) 题面 uoj 题解 首先多项式乘法用\(FFT\)是一个很久很久以前就写过的东西 直接贴一下代码吧.. #include<iostream> # ...

  6. 【learning】多项式乘法&fft

    [吐槽] 以前一直觉得这个东西十分高端完全不会qwq 但是向lyy.yxq.yww.dtz等dalao们学习之后发现这个东西的代码实现其实极其简洁 于是趁着还没有忘记赶紧来写一篇博 (说起来这篇东西的 ...

  7. 多项式乘法(FFT)学习笔记

    ------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法  ...

  8. FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)

    前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...

  9. 求幂运算、多项式乘法及Horner法则的应用

    一,两种不同的求幂运算 求解x^n(x 的 n 次方) ①使用递归,代码如下: private static long pow(int x, int n){ if(n == 0) return 1; ...

随机推荐

  1. Java线程synchronized(一)

    线程安全概念:当多个线程访问某一个类(对象或方法)时,这个对象始终都能表现出正确的行为,那么这个类(对象或方法)就是线程安全的. synchronized:可以在任意对象及方法上加锁,而加锁的这段代码 ...

  2. 第一个.NET小程序

    一.用户需求 做一个简单的网页版销售合同签核系统 1.业务员需要在手机或者电脑上操作,Key入销售合同 2.业务员填入相应的合同信息,对应主管签核 3.最终签核完,生成PDF版的销售合同,且上面自动加 ...

  3. 深入理解TCP三握四挥

    面试中被问到不少次TCP的三握四挥,今天特意来做一个总结(一些资料是很久前找的,忘了参考的链接了) 一.三次握手 首先来看一张图 最初,客户机A与服务器B的TCP进程都处于 CLOSED 状态. 然后 ...

  4. 【转载】C#中List集合使用RemoveAt方法移除指定索引位置的元素

    在C#的List集合操作中,移除集合中的元素可以使用Remove方法,不过Remove方法的参数为具体的List集合中的元素,其实还可以使用List集合的RemoveAt方法来移除List集合中的元素 ...

  5. Tomcat - 启动闪退

    版本:Tomcat 9 问题:启动闪退.在控制台中输入"java -version"可以正常输出java的版本信息,但是使用start.bat启动时候闪退. 解决方法:配置系统环境 ...

  6. go语言实现分布式id生成器

    本文:https://chai2010.cn/advanced-go-programming-book/ch6-cloud/ch6-01-dist-id.html 分布式id生成器 有时我们需要能够生 ...

  7. Linux记录history命令

    对后面的(1)方法的提取文件改写法(强烈推荐) 记录存储位置: mkdir -p /usr/local/records chmod 777 /usr/local/records/chmod +t /u ...

  8. D3.js画思维导图(转)

    思维导图的节点具有层级关系和隶属关系,很像枝叶从树干伸展开来的形状.在前面讲解布局的时候,提到有五个布局是由层级布局扩展来的,其中的树状图(tree layout)和集群图(cluster layou ...

  9. MySQL Binlog--基于ROW模式的binlog event大小限制

    参数binlog-row-event-max-size:Specify the maximum size of a row-based binary log event, in bytes. Rows ...

  10. LInux-命令在后台运行

    在终端运行一个持续很久的命令,一旦开始运行这个终端就会等待命令结束,才能输入下个指令,所以可以让这种指令放到后台运行,终端可以继续执行新指令. 后台运行 这种命令要满足1.要运行一段时间2.不需要与用 ...