回溯法 | 旅行商问题(TSP问题)
学习链接:
回溯法解旅行商问题(TSP)、贪心算法:旅行商问题(TSP)
今天早上做了无数个梦,然后被紧紧地吸附在床上。挣扎一番后爬起来,已经是9点了。然后我开始研究旅行商问题。
在一个无向图中找到一个可以遍历所有节点的一个最短回路。理论上说可以用全排列列出所有解的下标,然后一个一个试,时间复杂度o(n!)。但是可以用回溯法,用【约束函数】(constraint)判断当前路径是否连通,用【界限函数】(bound)判断当前路径是否比已经求得的最短路径小。这两个判断任意一个不符,则做“剪枝操作”(不再对后续节点进行遍历)。
可以看出回溯法比穷举要高明的多。这个回溯法和八皇后问题也有一些区别。TSP问题需要构造一棵排列树:
根节点为{0}
第一层{0,1}
第二层{0,1,2},{0,2,1}
第三层{0,1,2,3},{0,1,3,2},{0,2,1,3},{0,2,3,1},{0,3,1,2},{0,3,2,1}
……
并且回溯法要求对图进行DFS操作,即深度优先搜索。因为需要首先首次找到最深处的节点,才能设置当前最优解,好让后续问题能有参考。
Java代码:
public class Main {
public static void main(String[] args) {
int[][] adjMatrix={
{0,20,6,4},
{20,0,5,10},
{6,5,0,15},
{4,10,15,0},
};
TSP problem=new TSP(adjMatrix);
}
}
class TSP{
int vexnum=0;//顶点数目
int adjMatrix[][];
TSP(int[][] adjMat){
adjMatrix=adjMat;
vexnum=adjMatrix.length;
int init[]={0};
Backtrack(1,init);
int a;
a=0;
}
int bestCost=0;
int[] bestX;//最优解向量
boolean isTraverseDeep=false;
//回溯法递归
//初始x:[0]
void Backtrack(int t,int[] x){//对顶点t进行操作,父结点的解向量是x,
if(t>=vexnum){//解向量的第一个元素应该是初始顶点,如0,最后一个元素也是0
x[t]=0;//最后一个节点赋值:0。
constraint(x,t);
}else{//所有顶点都解完
int i,j;
int cx[]=new int[vexnum+1];
for(j=0;j<t;j++) cx[j]=x[j];//拷贝父结点
cx[t]=t;
if(constraint(cx,t)) Backtrack(t+1,cx);//不交换的情况下进行递归
//不断递归调用【Backtrack】,进行DFS
for(i=1;i<t;i++){
cx=new int[vexnum+1];
for(j=0;j<t;j++) cx[j]=x[j];//拷贝父结点
cx[t]=t;
swap(cx,i,t);
if(constraint(cx,t)) Backtrack(t+1,cx);//交换的情况下进行递归
}
}
}
boolean constraint(int[] x,int len){//对解进行约束
int cost=0;
int i;
int pre=x[0];
for(i=1;i<=len;i++){
int dist=adjMatrix[pre][x[i]];
if(dist<=0) return false;//不连通,则为否。约束(constraint)函数
cost+=dist;
pre=x[i];
}
if(isTraverseDeep){//如果已经进行了最底部的遍历,则对这个当前花费进行判别。界限(bound)函数
if(cost<bestCost){//比最优解要小
if(len==vexnum){//已经遍历完
bestCost=cost;
bestX=x;//设置最优解向量
}
return true;
}else return false;
}else if(len==vexnum){//首次遍历到底部
bestCost=cost;
bestX=x;//设置最优解向量
isTraverseDeep=true;
return true;
}
return true;
}
private void swap(int[] nums,int a,int b){
int tmp=nums[a];
nums[a]=nums[b];
nums[b]=tmp;
}
}
回溯法 | 旅行商问题(TSP问题)的更多相关文章
- python 回溯法 子集树模板 系列 —— 9、旅行商问题(TSP)
问题 旅行商问题(Traveling Salesman Problem,TSP)是旅行商要到若干个城市旅行,各城市之间的费用是已知的,为了节省费用,旅行商决定从所在城市出发,到每个城市旅行一次后返回初 ...
- NPC问题及其解决方法(回溯法、动态规划、贪心法、深度优先遍历)
NP问题(Non-deterministic Polynomial ):多项式复杂程度的非确定性问题,这些问题无法根据公式直接地计算出来.比如,找大质数的问题(有没有一个公式,你一套公式,就可以一步步 ...
- 回溯法解决N皇后问题(以四皇后为例)
以4皇后为例,其他的N皇后问题以此类推.所谓4皇后问题就是求解如何在4×4的棋盘上无冲突的摆放4个皇后棋子.在国际象棋中,皇后的移动方式为横竖交叉的,因此在任意一个皇后所在位置的水平.竖直.以及45度 ...
- leetcode_401_Binary Watch_回溯法_java实现
题目: A binary watch has 4 LEDs on the top which represent the hours (0-11), and the 6 LEDs on the bot ...
- uva216 c++回溯法
因为题目要求最多8台电脑,所以可以枚举全排列,然后依次计算距离进行比较,枚举量8!=40320并不大,但这种方法不如回溯法好,当数据再大一些枚举就显得笨拙了,所以这个题我用回溯法做的,回溯有一个好处是 ...
- UVa 129 (回溯法) Krypton Factor
回溯法确实不是很好理解掌握的,学习紫书的代码细细体会. #include <cstdio> ]; int n, L, cnt; int dfs(int cur) { if(cnt++ == ...
- 实现n皇后问题(回溯法)
/*======================================== 功能:实现n皇后问题,这里实现4皇后问题 算法:回溯法 ============================= ...
- UVA - 524 Prime Ring Problem(dfs回溯法)
UVA - 524 Prime Ring Problem Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & % ...
- HDU 2553 n皇后问题(回溯法)
DFS Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Description ...
随机推荐
- Linux下用source insight的另一种方式--Samba
花了一些时间想找一个在Linux下的类似source insight的东东,网上有人推荐的source navigator,kscope之类,就那么几种颜色(也许没深入设置),也能叫语法高亮?至于其他 ...
- spring的15个经典面试题
总结Spring框架的15个经典面试题. 什么是Spring框架? Spring是一种轻量级框架,旨在提高开发人员的开发效率以及系统的可维护性. 我们一般说的Spring框架就是Spring Fram ...
- 【spring boot】spring boot的自定义banner修改+spring boot启动项目图标修改
1.启动Spring Boot项目后会看到这样的图案,这个图片其实是可以自定义的,打开网站 http://patorjk.com/software/taag/#p=display&h=3&am ...
- 一个JS正则的字符串替换函数
直接上函数吧 不废话 function replacestring(oldstr,newstr,text) { var exp = new RegExp(oldstr,'g'); var c=tex ...
- 2019-11-29-win10-UWP-Controls-by-function
原文:2019-11-29-win10-UWP-Controls-by-function title author date CreateTime categories win10 UWP Contr ...
- wcf序列化嵌套类(如TreeNode)异常原因
循环引用类在WCF中的传递 循环引用类在WCF中的传递问题,例如: [DataContract] public class AB { public string name { ...
- netcore添加api帮助文档页-Swagger
1. 添加NuGet包 1)最基本的包:Swashbuckle.AspNetCore.Swagger 2)扩展包:Swashbuckle.AspNetCore.SwaggerGen和Swashbuck ...
- input或者el-cascader的输入框随输入内容宽度自适应
解决的思路是动态修改css的width 参考:https://blog.csdn.net/lianzhang861/article/details/84306139中的方法一, 如果是input,用o ...
- 网络编程——TCP协议、UDP协议、socket套接字、粘包问题以及解决方法
网络编程--TCP协议.UDP协议.socket套接字.粘包问题以及解决方法 TCP协议(流式协议) 当应用程序想通过TCP协议实现远程通信时,彼此之间必须先建立双向通信通道,基于该双向通道实现数 ...
- make几个知识点
即时变量和延时变量 在下面代码中,定义了一个值为x的x变量,以延时变量的方式将它的值赋给y,以即时变量的方式将它的值赋给z. 因为y为延时变量,所以y的取值并不会立即计算,而是在整个文件解析完成之后才 ...