牛客挑战赛32 E. 树上逆序对
对于一对 $(x, y)$,能成为逆序对的取决于绝对值大的那个数的符号。
假如 $a[x] > a[y]$,当 $a[x]$ 为正时,不管 $a[y]$ 取不取负号都比 $a[x]$ 小。
当 $a[x]$ 为负时, 不管 $a[y]$ 取不取负号都比 $a[x]$ 大。
那么就变成了统计每个节点的子树及祖先有多少个比它的权值小的。取正时,子树内权值比它小的节点对答案有贡献,取负时,祖先中权值比它的节点对答案有贡献。
然后就相当于01背包了。
用bitset优化一下复杂度就是 $O(\dfrac{nk}{64})$
求子树内和到根的路径上比该节点小的数可以树剖做。但看了tangjz的代码发现一个更加巧妙的方法。
求子树内显然可以从小到大插入节点+dfs序+树状数组。
求该节点到根的路径上比自己权值大的,就相当于求自己有几个祖先,相当于求自己在多少个节点的子树内。
那么多开一个树状数组,在插入一个节点时,让其子树这个区间(不包括自身)区间加一。查询时单点查值就行了。
#include <bits/stdc++.h>
using namespace std; const int N = 1e5 + ; bitset<> mask; int n; struct BIT {
int tree[N];
inline int lowbit(int x) {
return x & -x;
}
void add(int x, int v) {
if (!x) return;
for (int i = x; i <= n; i += lowbit(i))
tree[i] += v;
}
int query(int x) {
int ans = ;
for (int i = x; i; i -= lowbit(i))
ans += tree[i];
return ans;
}
} bit[]; int a[N], in[N], out[N], tol, o[N];
vector<int> G[N]; void dfs(int u, int fa) {
in[u] = ++tol;
for (auto v: G[u])
if (v != fa) dfs(v, u);
out[u] = tol;
} bool cmp(const int &x, const int &y) {
return a[x] < a[y];
} int main() {
scanf("%d", &n);
for (int i = ; i <= n; i++) {
scanf("%d", &a[i]);
o[i] = i;
}
sort(o + , o + n + , cmp);
for (int i = ; i < n; i++) {
int u, v;
scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
dfs(, -);
mask.set();
for (int i = ; i <= n; i++) {
int u = o[i];
int k1 = bit[].query(in[u]), k2 = bit[].query(out[u]) - bit[].query(in[u] - );
mask = mask << k1 | mask << k2;
bit[].add(in[u] + , ); bit[].add(out[u] + , -);
bit[].add(in[u], );
}
int q;
scanf("%d", &q);
while (q--) {
int k;
scanf("%d", &k);
puts(mask.test(k) ? "Orz" : "QAQ");
}
return ;
}
牛客挑战赛32 E. 树上逆序对的更多相关文章
- 【牛客挑战赛32E】树上逆序对
题目 数据范围非常奇怪,询问的逆序对个数\(k\leq 30000\),我们应该可以把所有的情况都求出来 发现对于树上两点\(x,y\),如果\(x\)是\(y\)的祖先,那么绝对值较大的点的符号决定 ...
- 【并查集缩点+tarjan无向图求桥】Where are you @牛客练习赛32 D
目录 [并查集缩点+tarjan无向图求桥]Where are you @牛客练习赛32 D PROBLEM SOLUTION CODE [并查集缩点+tarjan无向图求桥]Where are yo ...
- 牛客挑战赛32E 树上逆序对
nowcoder 口胡一时爽 先从这个逆序对的性质入手,手玩可以发现对于一对具有祖先关系节点的点,只有权值绝对值大的才能对这一对点是否为逆序对造成影响.具体来讲,如果祖先点权值大,并且取正号,那么其后 ...
- P2995 [USACO10NOV]牛的照片(树状数组,逆序对)
题目: P2995 [USACO10NOV]牛的照片Cow Photographs P4545 [USACO10NOV]奶牛的图片Cow Photographs SP7809 COWPIC - Cow ...
- 牛客练习赛32 B题 Xor Path
链接:https://ac.nowcoder.com/acm/contest/272/B来源:牛客网 题目描述 给定一棵n个点的树,每个点有权值.定义表示 到 的最短路径上,所有点的点权异或和. ...
- 牛客挑战赛 39 牛牛与序列 隔板法 容斥 dp
LINK:牛牛与序列 (牛客div1的E题怎么这么水... 还没D难. 定义一个序列合法 当且仅当存在一个位置i满足 $a_i>a_,a_j<a_$且对于所有的位置i,$1 \leq a_ ...
- 牛客挑战赛46 C
题目链接: 排列 考虑\(dp\),我们思考如何设计状态 将第i个数插入i-1个数中,我们考虑会新增多少个超级逆序对 假设将\(i\)插入后\(i\)的位置为\(l\),\(i-1\)的原来的位置为\ ...
- 牛客挑战赛33 F 淳平的形态形成场(无向图计数,EGF,多项式求逆)
传送门: 淳平的形态形成场 题解: 把a排序后,直接统计答案恰好为a[i]并不好做,可以统计答案>a[i]的方案数,设为\(f[i]\). 即不存在一个联通块,所有的权值都<=a[i]. ...
- 良心送分题(牛客挑战赛35E+虚树+最短路)
目录 题目链接 题意 思路 代码 题目链接 传送门 题意 给你一棵树,然后把这棵树复制\(k\)次,然后再添加\(m\)条边,然后给你起点和终点,问你起点到终点的最短路. 思路 由于将树复制\(k\) ...
随机推荐
- SQL Server DBCC命令大全
原文出处:https://www.cnblogs.com/lyhabc/archive/2013/01/19/2867174.html DBCC DROPCLEANBUFFERS:从缓冲池中删除所有缓 ...
- 【转】潜说js对象和数组
/* 数组和对象 [JavaScript 权威指南 第五版] */ /* 对象: 是一个无序属性集合, 每个属性都有自己的名字和值 */ /* 创建对象简单方法, 对象直接量 */ var obj = ...
- <面试题分享> 记两次58面试
说明 来北京找工作,有个猎头看我的简历不错,帮我投了两个58同城的面试,投的都比较高,题也注重原理,较难,这里分享出来,给有需要的人和自己提个醒,保持空杯 面试题内容 2019.05.07 北京58企 ...
- 使用位运算实现int32位 整数的加减乘除
我觉得比较难想的是加法吧. 首先加法,脑海中脑补二进制加法,相同位相加,超过2 ,则进1,留0 那么用位运算怎么实现呢?其实理解了异或和与操作,就很容易想出来了. 我觉得异或操作和与操作完全就是实现加 ...
- Scala 系列(十一)—— 模式匹配
一.模式匹配 Scala 支持模式匹配机制,可以代替 swith 语句.执行类型检查.以及支持析构表达式等. 1.1 更好的swith Scala 不支持 swith,可以使用模式匹配 match.. ...
- HashSet去重
class Program { static void Main(string[] args) { Console.WriteLine( ...
- CentOS 7 安装 mysql 5.7.27 for zabbix
本文是因为需要安装zabbix系统,才贴出的此步骤,供自己查阅方便之用: 在安装使用zabbix前,需要先安装数据库,这里使用的是MySQL数据库进行部署,给出安装步骤,大家觉得有用也可收藏: 当然安 ...
- C#读写设置修改调整UVC摄像头画面-焦点
有时,我们需要在C#代码中对摄像头的焦点进行读和写,并立即生效.如何实现呢? 建立基于SharpCamera的项目 首先,请根据之前的一篇博文 点击这里 中的说明,建立基于SharpCamera的摄像 ...
- C# 接口、抽象类、以及事件
接口.抽象类,用于项目集成,如: Interface icls = appid == "A" ? new ClassA() : new ClassA();icls.func(&qu ...
- Python进阶----索引原理,mysql常见的索引,索引的使用,索引的优化,不能命中索引的情况,explain执行计划,慢查询和慢日志, 多表联查优化
Python进阶----索引原理,mysql常见的索引,索引的使用,索引的优化,不能命中索引的情况,explain执行计划,慢查询和慢日志, 多表联查优化 一丶索引原理 什么是索引: 索引 ...