Online Hard Example Mining 理解
Definition:
Online Hard Example Mining (OHEM) is a way to pick hard examples with reduced computation cost to improve your network performance on borderline cases which generalize to the general performance. It is mostly used for Object Detection. Suppose you like to train a car detector and you have positive (with car) and negative images (with no car). Now you like to train your network. In practice, you find yourself in many negatives as oppose to relatively much small positives. To this end, it is clever to pick a subset of negatives that are the most informative for your network. Hard Example Mining is the way to go to this.
(Hard Example :In a detection problem, hard examples corresponds to false positive detection(误认为是正确的检测) )
In general, to pick a subset of negatives, first you train your network for couple of iterations, then you run your network all along your negative instances then you pick the ones with the greater loss values. However, it is very computationally toilsome since you have possibly millions of images to process, and sub-optimal for your optimization since you freeze your network while picking your hard instances that are not all being used for the next couple of iterations. That is, you assume here all hard negatives you pick are useful for all the next iterations until the next selection. Which is an imperfect assumption especially for large datasets.
Okay, what Online means in this regard. OHEM solves these two aforementioned problems by performing hard example selection batch-wise. Given a batch sized K, it performs regular forward propagation and computes per instance losses. Then, it finds M<K hard examples in the batch with high loss values and it only back-propagates the loss computed over the selected instances.
简单的理解就是为了减少挑选hard example时候的计算量,我们选取一些hard example反向传播,
reference:
http://www.erogol.com/online-hard-example-mining-pytorch/
Online Hard Example Mining 理解的更多相关文章
- Oracle ITL(Interested Transaction List)理解
ITL(Interested Transaction List) ITL是位于数据块头部的事物槽列表,它是由一系列的ITS(Interested Transaction Slot,事物槽)组成,其初始 ...
- 支持向量机通俗导论(理解SVM的三层境界)
原文链接:http://blog.csdn.net/v_july_v/article/details/7624837 作者:July.pluskid :致谢:白石.JerryLead 出处:结构之法算 ...
- Weka 3: Data Mining Software in Java
官方网站: Weka 3: Data Mining Software in Java 相关使用方法博客 WEKA使用教程(经典教程转载) (实例数据:bank-data.csv) Weka初步一.二. ...
- 《深入理解Java虚拟机》-----第8章 虚拟机字节码执行引擎——Java高级开发必须懂的
概述 执行引擎是Java虚拟机最核心的组成部分之一.“虚拟机”是一个相对于“物理机”的概念 ,这两种机器都有代码执行能力,其区别是物理机的执行引擎是直接建立在处理器.硬件.指令集和操作系统层面上的,而 ...
- Fast RCNN 中的 Hard Negative Mining
 Fast RCNN 中将与 groud truth 的 IoU 在 [0.1, 0.5) 之间标记为负例, [0, 0.1) 的 example 用于 hard negative mining. ...
- 对Inductive Bias(归纳偏置)的理解
参考资料: https://en.wikipedia.org/wiki/Inductive_bias http://blog.sina.com.cn/s/blog_616684a90100emkd.h ...
- R-FCN论文理解
一.R-FCN初探 1. R-FCN贡献 提出Position-sensitive score maps来解决目标检测的位置敏感性问题: 区域为基础的,全卷积网络的二阶段目标检测框架: 比Faster ...
- 对PBFT算法的理解
PBFT论文断断续续读了几遍,每次读或多或少都会有新的理解,结合最近的项目代码,对于共识的原理有了更清晰的认识.虽然之前写过一篇整理PBFT论文的博客,但是当时只是知道了怎么做,却不理解为什么.现在整 ...
- 支持向量机通俗导论(理解SVM的三层境界) by v_JULY_v
支持向量机通俗导论(理解SVM的三层境界) 前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去 ...
随机推荐
- git:GitLab代码回滚到特定版本
在当前branch上多次commit代码并且push后,发现不符合要求,需要回滚到特定的版本.步骤如下: 1.查找commitId (1)用命令行打开git项目路径,输入git log命令查看comm ...
- win10照片查看器不能看jpg等格式图片
1.首先,我们需要使用注册表编辑器来开启Win10系统照片查看器功能,因为其实这个功能是被隐藏了,那么按下Windows徽标键+R键,打开运行命令窗口,输入“regedit”命令. 2.打开注册表编辑 ...
- SSH框架整合3——原生态SessionFactory
================================================web.xml============================================= ...
- #C++初学记录(ACM8-6-cf-f题)
F. Vanya and Label While walking down the street Vanya saw a label "Hide&Seek". Becaus ...
- dockerfile文件语法命令
dockerfile文件语法命令 (1) FROM命令,支持两种形式,构建新镜像使用的基础镜像,所以源镜像必须存在,并且是非注释的第一条命令. DOCKERFILEFORM <image> ...
- 城东C位之路!探秘三线楼市板块崛起3大核心基因
等着咧!伍家篇什么时候出?这就出. 城东C位之路!- 诸葛磊 好几个粉丝已经在催了,诸葛磊决定改变下写作策略,伍家岗篇分版块用小篇幅来写,这样文章不至于太长,否则又是一篇洋洋洒洒上万字的文章,粉丝看着 ...
- win10 配置git 环境变量
'git' 不是内部或外部命令,也不是可运行的程序 或批处理文件. 解决办法: 去百度大概搜了一下,是因为没有配置Git环境变量的原因,但是没有具体的解决步骤,特此记录一下. 右键查看git安装目录: ...
- iOS - 点击按钮实现简单的复制功能
UIPasteboard使用 基本使用: - (void)copyClick { UIPasteboard *pab = [UIPasteboard generalPasteboard]; pab.s ...
- [LeetCode] 142. Linked List Cycle II 链表中的环 II
Given a linked list, return the node where the cycle begins. If there is no cycle, return null. Foll ...
- [LeetCode] 228. Summary Ranges 总结区间
Given a sorted integer array without duplicates, return the summary of its ranges. Example 1: Input: ...