张宁 Optimal Trajectory Generation for Quadrotor Teach-And-Repeat
链接:https://pan.baidu.com/s/1x0CmuOXiLu_BHQFfhnrwSA 提取码:9npg

Optimal Trajectory Generation for Quadrotor Teach-and-Repeat

四旋翼重复示教的最优轨迹生成

Fei Gao, Luqi Wang, Kaixuan Wang, William Wu, Boyu Zhou, Luxin Han and Shaojie Shen

In this paper, we propose a novel motion planning framework for quadrotor teach-and-repeat applications. Instead of controlling the drone to precisely follow the teaching path, our method converts an arbitrary jerky human-piloted trajectory to a topologically equivalent one,which is guaranteed to be safe, smooth, and kinodynamically feasible with an expected aggressiveness. Our proposed planning framework optimizes the trajectory in both spatial and temporal aspects.In the spatial layer, a flight corridor is found to represent the free space which is topologically equivalent with the teaching path. Then a minimum-jerk piecewise trajectory is generated within the flight corridor. In the temporal layer, the trajectory is reparameterized to obtain a minimum-time temporal trajectory under kinodynamic constraints. The spatial and temporal optimizations are both formulated as convex programs and are done iteratively. The proposed method is integrated into a complete quadrotor system and is validated to perform aggressive flights in challenging indoor and outdoor environments.

在本文中,我们提出了一种适用于四旋翼示教重复应用的新颖运动规划框架。 我们的方法不是控制无人机精确地遵循教学路线,而是将任意的人为操纵的轨迹转换为拓扑等效的轨迹,从而保证了安全性,平滑性和运动学上可行的预期攻击性。我们提出的规划框架在时间和空间两个方面都优化了轨迹。在空间层中,发现了一个以走廊为代表的自由空间,该自由空间在拓扑上与教学路径等效。 然后,在飞行通道内生成了一个最小冲击的分段轨迹。 在时间层中,轨迹被重新参数化以获得在运动动力学约束下的最小时间时间轨迹。空间和时间优化都被表述为凸程序,并且是迭代完成的。 所提出的方法已集成到完整的四旋翼系统中,并且经过验证可在具有挑战性的室内和室外环境中执行激进的战斗。

泡泡一分钟:Optimal Trajectory Generation for Quadrotor Teach-And-Repeat的更多相关文章

  1. 【路径规划】 Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenet Frame (附python代码实例)

    参考与前言 2010年,论文 Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenet Frame 地址:https ...

  2. 泡泡一分钟:Efficient Trajectory Planning for High Speed Flight in Unknown Environments

    张宁  Efficient Trajectory Planning for High Speed Flight in Unknown Environments 高效飞行在未知环境中的有效轨迹规划链接: ...

  3. 泡泡一分钟:Perception-aware Receding Horizon Navigation for MAVs

    作为在空中抛掷四旋翼飞行器后恢复的第一步,它需要检测它使用其加速度计的发射.理想的情况下,在飞行中,加速度计理想地仅测量由于施加的转子推力引起的加速度,即.因此,当四旋翼飞行器发射时,我们可以检测到测 ...

  4. 泡泡一分钟:Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning

    张宁 Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning 多 ...

  5. 泡泡一分钟:Cubic Range Error Model for Stereo Vision with Illuminators

    Cubic Range Error Model for Stereo Vision with Illuminators 带有照明器的双目视觉的三次范围误差模型 "链接:https://pan ...

  6. 泡泡一分钟:Automatic Parameter Tuning of Motion Planning Algorithms

    Automatic Parameter Tuning of Motion Planning Algorithms 运动规划算法的自动参数整定 Jos´e Cano, Yiming Yang, Brun ...

  7. 泡泡一分钟:A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area

    A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area 城市车辆定位的多位置联合 ...

  8. Matlab Robotics Toolbox 仿真计算:Kinematics, Dynamics, Trajectory Generation

    1. 理论知识 理论知识请参考: 机器人学导论++(原书第3版)_(美)HLHN+J.CRAIG著++贠超等译 机器人学课程讲义(丁烨) 机器人学课程讲义(赵言正) 2. Matlab Robotic ...

  9. 泡泡一分钟:Semi-Dense Visual-Inertial Odometry and Mapping for Quadrotors with SWAP Constraints

    张宁 Semi-Dense Visual-Inertial Odometry and Mapping for Quadrotors with SWAP Constraints 具有SWAP约束的四旋翼 ...

随机推荐

  1. 访问hive显示原数据报错

    访问hive报错如下: FAILED: SemanticException org.apache.hadoop.hive.ql.metadata.HiveException: java.lang.Ru ...

  2. WingIDE Pro 7如何检查Python集成?

    在开始使用某些代码之前,让我们确保Wing已成功找到您的Python安装.立即从“ 工具”菜单中打开Python Shell工具.如果一切顺利,它应该启动Python并向您显示Python命令提示符, ...

  3. docker(ubuntu)中安装cron运行crontab定时任务

    1.安装cron apt-get install cron 设置crontab定时任务 crontab -e */ * * * * /usr/bin/python /python/asch-check ...

  4. 《TensorFlow2深度学习》学习笔记(一)Tensorflow基础

    本系列笔记记录了学习TensorFlow2的过程,主要依据 https://github.com/dragen1860/Deep-Learning-with-TensorFlow-book 进行学习 ...

  5. dfs 解决八皇后问题 以及其他图搜索问题

    33. N皇后问题 中文 English n皇后问题是将n个皇后放置在n*n的棋盘上,皇后彼此之间不能相互攻击(任意两个皇后不能位于同一行,同一列,同一斜线). 给定一个整数n,返回所有不同的n皇后问 ...

  6. com.mysql.jdbc.MysqlDataTruncation: Data truncation异常

    Exception in thread "main" com.mysql.jdbc.MysqlDataTruncation: Data truncation: Data too l ...

  7. graylog-docker安装

    Graylog安装(docker) 1.安装docker jdk1.8 2.下载docker镜像 docker pull mongo docker pull docker.elastic.co/ela ...

  8. 《快活帮》第九次团队作业:【Beta】Scrum meeting 1

    项目 内容 这个作业属于哪个课程 2016计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 实验十三 团队作业9:BETA冲刺与团队项目验收 团队名称 快活帮 作业学习目标 (1)掌 ...

  9. WHAT IS GAME-BASED LEARNING?

    https://www.growthengineering.co.uk/what-is-game-based-learning/ Gamification and game-based learnin ...

  10. Spring AOP中JoinPoint的用法

    Spring JoinPoint的用法 JoinPoint 对象 JoinPoint对象封装了SpringAop中切面方法的信息,在切面方法中添加JoinPoint参数,就可以获取到封装了该方法信息的 ...