张宁 Optimal Trajectory Generation for Quadrotor Teach-And-Repeat
链接:https://pan.baidu.com/s/1x0CmuOXiLu_BHQFfhnrwSA 提取码:9npg

Optimal Trajectory Generation for Quadrotor Teach-and-Repeat

四旋翼重复示教的最优轨迹生成

Fei Gao, Luqi Wang, Kaixuan Wang, William Wu, Boyu Zhou, Luxin Han and Shaojie Shen

In this paper, we propose a novel motion planning framework for quadrotor teach-and-repeat applications. Instead of controlling the drone to precisely follow the teaching path, our method converts an arbitrary jerky human-piloted trajectory to a topologically equivalent one,which is guaranteed to be safe, smooth, and kinodynamically feasible with an expected aggressiveness. Our proposed planning framework optimizes the trajectory in both spatial and temporal aspects.In the spatial layer, a flight corridor is found to represent the free space which is topologically equivalent with the teaching path. Then a minimum-jerk piecewise trajectory is generated within the flight corridor. In the temporal layer, the trajectory is reparameterized to obtain a minimum-time temporal trajectory under kinodynamic constraints. The spatial and temporal optimizations are both formulated as convex programs and are done iteratively. The proposed method is integrated into a complete quadrotor system and is validated to perform aggressive flights in challenging indoor and outdoor environments.

在本文中,我们提出了一种适用于四旋翼示教重复应用的新颖运动规划框架。 我们的方法不是控制无人机精确地遵循教学路线,而是将任意的人为操纵的轨迹转换为拓扑等效的轨迹,从而保证了安全性,平滑性和运动学上可行的预期攻击性。我们提出的规划框架在时间和空间两个方面都优化了轨迹。在空间层中,发现了一个以走廊为代表的自由空间,该自由空间在拓扑上与教学路径等效。 然后,在飞行通道内生成了一个最小冲击的分段轨迹。 在时间层中,轨迹被重新参数化以获得在运动动力学约束下的最小时间时间轨迹。空间和时间优化都被表述为凸程序,并且是迭代完成的。 所提出的方法已集成到完整的四旋翼系统中,并且经过验证可在具有挑战性的室内和室外环境中执行激进的战斗。

泡泡一分钟:Optimal Trajectory Generation for Quadrotor Teach-And-Repeat的更多相关文章

  1. 【路径规划】 Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenet Frame (附python代码实例)

    参考与前言 2010年,论文 Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenet Frame 地址:https ...

  2. 泡泡一分钟:Efficient Trajectory Planning for High Speed Flight in Unknown Environments

    张宁  Efficient Trajectory Planning for High Speed Flight in Unknown Environments 高效飞行在未知环境中的有效轨迹规划链接: ...

  3. 泡泡一分钟:Perception-aware Receding Horizon Navigation for MAVs

    作为在空中抛掷四旋翼飞行器后恢复的第一步,它需要检测它使用其加速度计的发射.理想的情况下,在飞行中,加速度计理想地仅测量由于施加的转子推力引起的加速度,即.因此,当四旋翼飞行器发射时,我们可以检测到测 ...

  4. 泡泡一分钟:Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning

    张宁 Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning 多 ...

  5. 泡泡一分钟:Cubic Range Error Model for Stereo Vision with Illuminators

    Cubic Range Error Model for Stereo Vision with Illuminators 带有照明器的双目视觉的三次范围误差模型 "链接:https://pan ...

  6. 泡泡一分钟:Automatic Parameter Tuning of Motion Planning Algorithms

    Automatic Parameter Tuning of Motion Planning Algorithms 运动规划算法的自动参数整定 Jos´e Cano, Yiming Yang, Brun ...

  7. 泡泡一分钟:A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area

    A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area 城市车辆定位的多位置联合 ...

  8. Matlab Robotics Toolbox 仿真计算:Kinematics, Dynamics, Trajectory Generation

    1. 理论知识 理论知识请参考: 机器人学导论++(原书第3版)_(美)HLHN+J.CRAIG著++贠超等译 机器人学课程讲义(丁烨) 机器人学课程讲义(赵言正) 2. Matlab Robotic ...

  9. 泡泡一分钟:Semi-Dense Visual-Inertial Odometry and Mapping for Quadrotors with SWAP Constraints

    张宁 Semi-Dense Visual-Inertial Odometry and Mapping for Quadrotors with SWAP Constraints 具有SWAP约束的四旋翼 ...

随机推荐

  1. Linux运维技术之yum与rpm的基本使用要点

    https://pkgs.org/ 与https://rpmfind.org/   RPM包下载 RPM包简介 1.安装与升级时,使用的是包全名 2.RPM包安装时要注意包的依赖性 RPM包操作(系统 ...

  2. virsh console 登录CentOS7系统

    一.在kvm虚拟机中执行如下命令 systemctl start serial-getty@ttyS0.service systemctl enable serial-getty@ttyS0.serv ...

  3. Mincut 最小割 (BZOJ1797+最小割+tarjan)

    题目链接 传送门 思路 根据题目给定的边跑一边最大流,然后再在残留网络上跑\(tarjan\). 对于每一条边有: 如果它是非满边,那么它一定不是最小割集里面的边: 如果\(c[u[i]] \not= ...

  4. 图论 - 图的深度优先遍历c++实现

    图的深度优先遍历c++实现 深度优先搜索 邻接矩阵的创建 int i, j, m, a, b; cin >> n >> m; //初始化二维矩阵 for (i = 1; i & ...

  5. Centos7-bond模式介绍

    bond模式: Mode=0(balance-rr)表示负载分担round-robin Mode=1(active-backup)表示主备模式,只有一块网卡是active,另外一块是备的standby ...

  6. Easyui 验证验证扩展,限制combobox 只能输入选项内容

    $.extend($.fn.validatebox.defaults.rules, { CHS: { validator: function (value, param) { return /^[\u ...

  7. GitHub & GitHub Desktop能帮我们做什么

    GitHub: 1.代码版本管理 GitHub Desktop:

  8. crontab每小时运行一次(转)

    https://blog.csdn.net/liu0808/article/details/80668705 先给出crontab的语法格式 对于网上很多给出的每小时定时任务写法,可以说绝大多数都是错 ...

  9. Python 弹出框代码

      from ctypes import * user32 = windll.LoadLibrary('user32.dll')#调用dll文件 #a是得到弹出框的选择按钮的值 user32.Mess ...

  10. [Algorithm] 122. Best Time to Buy and Sell Stock II

    Previous one: https://www.cnblogs.com/Answer1215/p/11974453.html Say you have an array for which the ...