tf.constant

constant(
value,
dtype=None,
shape=None,
name='Const',
verify_shape=False
)

功能说明:

根据 value 的值生成一个 shape 维度的常量张量

参数列表:

参数名 必选 类型 说明
value 常量数值或者 list 输出张量的值
dtype dtype 输出张量元素类型
shape 1 维整形张量或 array 输出张量的维度
name string 张量名称
verify_shape Boolean 检测 shape 是否和 value 的 shape 一致,若为 Fasle,不一致时,会用最后一个元素将 shape 补全
#!/usr/bin/python

import tensorflow as tf
import numpy as np
a = tf.constant([1,2,3,4,5,6],shape=[2,3])
b = tf.constant(-1,shape=[3,2])
c = tf.matmul(a,b) e = tf.constant(np.arange(1,13,dtype=np.int32),shape=[2,2,3])
f = tf.constant(np.arange(13,25,dtype=np.int32),shape=[2,3,2])
g = tf.matmul(e,f)
with tf.Session() as sess:
print (sess.run(a))
print ("##################################")
print (sess.run(b))
print ("##################################")
print (sess.run(c))
print ("##################################")
print (sess.run(e))
print ("##################################")
print (sess.run(f))
print ("##################################")
print (sess.run(g))

tf.constant的更多相关文章

  1. TF Boys (TensorFlow Boys ) 养成记(一)

    本资料是在Ubuntu14.0.4版本下进行,用来进行图像处理,所以只介绍关于图像处理部分的内容,并且默认TensorFlow已经配置好,如果没有配置好,请参考官方文档配置安装,推荐用pip安装.关于 ...

  2. TF中conv2d和kernel_initializer方法

    conv2d中的padding 在使用TF搭建CNN的过程中,卷积的操作如下 convolution = tf.nn.conv2d(X, filters, strides=[1,2,2,1], pad ...

  3. TF.VARIABLE、TF.GET_VARIABLE、TF.VARIABLE_SCOPE以及TF.NAME_SCOPE关系

    1. tf.Variable与tf.get_variable tensorflow提供了通过变量名称来创建或者获取一个变量的机制.通过这个机制,在不同的函数中可以直接通过变量的名字来使用变量,而不需要 ...

  4. 为什么要写 tf.Graph().as_default()

    首先,去tensorflow官网API上查询 tf.Graph() 会看到如下图所示的内容: 总体含义是说: tf.Graph() 表示实例化了一个类,一个用于 tensorflow 计算和表示用的数 ...

  5. 基于TensorFlow的深度学习系列教程 2——常量Constant

    前面介绍过了Tensorflow的基本概念,比如如何使用tensorboard查看计算图.本篇则着重介绍和整理下Constant相关的内容. 基于TensorFlow的深度学习系列教程 1--Hell ...

  6. 理解 tf.Variable、tf.get_variable以及范围命名方法tf.variable_scope、tf.name_scope

    tensorflow提供了通过变量名称来创建或者获取一个变量的机制.通过这个机制,在不同的函数中可以直接通过变量的名字来使用变量,而不需要将变量通过参数的形式到处传递. 1. tf.Variable( ...

  7. TF的使用

      激活函数 关于激活函数的介绍请参考:激活函数 这里只是记录TF提供的激活函数 import tensorflow as tf a = tf.nn.relu( tf.matmul(x, w1) + ...

  8. TF之RNN:基于顺序的RNN分类案例对手写数字图片mnist数据集实现高精度预测—Jason niu

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...

  9. TF:TF下CNN实现mnist数据集预测 96%采用placeholder用法+2层C及其max_pool法+隐藏层dropout法+输出层softmax法+目标函数cross_entropy法+AdamOptimizer算法

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # number 1 to 10 ...

随机推荐

  1. MySQL备份与还原详细过程示例

    MySQL备份与还原详细过程示例 一.MySQL备份类型 1.热备份.温备份.冷备份 (根据服务器状态) 热备份:读.写不受影响: 温备份:仅可以执行读操作: 冷备份:离线备份:读.写操作均中止: 2 ...

  2. ASP.NET Core之项目文件简介及配置文件与IOC的使用

    原文地址:https://www.cnblogs.com/knowledgesea/p/7079880.html 序言 在当前编程语言蓬勃发展与竞争的时期,对于我们.net从业者来说,.Net Cor ...

  3. NPM Node.js 包管理

    1.NPM 简介 1.1 NPM Node.js® 是一个基于 Chrome V8 引擎的 JavaScript 运行环境,可方便地构建快速,可扩展的网络应用程序的平台.Node.js 使用事件驱动, ...

  4. Runway for Mac(UML 流程图绘图工具)破解版安装

    1.软件简介    Runway 是 macOS 系统上一款强大实用的软件开发工具,Runway for Mac 是一个界面简单功能强大的UML设计师.此外,Runway for Mac 带给你所有你 ...

  5. .Net Core ORM选择之路,哪个才适合你 通用查询类封装之Mongodb篇 Snowflake(雪花算法)的JavaScript实现 【开发记录】如何在B/S项目中使用中国天气的实时天气功能 【开发记录】微信小游戏开发入门——俄罗斯方块

    .Net Core ORM选择之路,哪个才适合你   因为老板的一句话公司项目需要迁移到.Net Core ,但是以前同事用的ORM不支持.Net Core 开发过程也遇到了各种坑,插入条数多了也特别 ...

  6. mysql远程访问,修改root密码

    mysql -uroot -p #input password use mysql; update user set host='%' where user='root'; flush privile ...

  7. docker学习笔记 --- centos install

    Docker简介: Docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从Apache2.0协议开源. Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级.可移植的容器中,然后发 ...

  8. label 赋值 , 隐藏 , 显示

    <label name='by_stages_number' id='by_stages_number'></label> document.getElementById(&q ...

  9. span的赋值与取值

      1.<span id="span_id">span的文本</span>的取值. js取<span>的值并不是用document.getEle ...

  10. iOS UILabel设置居上对齐,居中对齐,居下对齐

    在iOS中默认的UILabel中的文字在竖直方向上仅仅能居中对齐,博主參考国外站点.从UILabel继承了一个新类,实现了居上对齐,居中对齐,居下对齐.详细例如以下: // //  myUILabel ...