Rebuilding Roads
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 9105   Accepted: 4122

Description

The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, number 1..N) after the terrible earthquake last May. The cows didn't have time to rebuild any extra roads, so now there is exactly one way to get from any given barn to any other barn. Thus, the farm transportation system can be represented as a tree.

Farmer John wants to know how much damage another earthquake could do. He wants to know the minimum number of roads whose destruction would isolate a subtree of exactly P (1 <= P <= N) barns from the rest of the barns.

Input

* Line 1: Two integers, N and P

* Lines 2..N: N-1 lines, each with two integers I and J. Node I is node J's parent in the tree of roads.

Output

A single line containing the integer that is the minimum number of roads that need to be destroyed for a subtree of P nodes to be isolated. 

Sample Input

11 6
1 2
1 3
1 4
1 5
2 6
2 7
2 8
4 9
4 10
4 11

Sample Output

2

Hint

[A subtree with nodes (1, 2, 3, 6, 7, 8) will become isolated if roads 1-4 and 1-5 are destroyed.] 
 
题意:最小多少切割次数切割出一棵P节点的子树
思路:不要以为是切掉P个点...是切出
1 dp[i][j]节点i切成j的子树所需要的最小切数
2 有两种转移,第一种切断子树,需要+1,第二种合并子树
具体看代码,注意不要互相更新
错误5次:1 胡乱提交 2 互相更新 3 忘了非根子树要切
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=152;
const int inf=0x7ffff;
int dp[maxn][maxn];
int des[maxn];//中间缓存防止自身更新
int e[maxn][maxn];
int len[maxn];//建图
int lef[maxn];//子节点+自身个数
int n,p;
void dfs(int s){
lef[s]=1;//自身肯定算一个,子节点还没加上
dp[s][1]=0;//这个时候只有不切一种可能
if(len[s]==0){return ;}//没必要刻意 for(int i=0;i<len[s];i++){
int t=e[s][i];
dfs(t);
fill(des,des+n+1,inf);//初始化缓存
for(int k=1;k<=lef[s];k++){
des[k]=dp[s][k]+1;//切
}
for(int k=1;k<=lef[s];k++){
for(int j=1;j<=lef[t];j++){
des[k+j]=min(dp[s][k]+dp[t][j],des[k+j]);//不切
}
}
lef[s]+=lef[t];//加上这一枝
for(int k=1;k<=lef[s];k++){
dp[s][k]=des[k];//从缓存中取状态
}
dp[s][lef[s]]=0;//不需要
}
}
int main(){
scanf("%d%d",&n,&p);
memset(len,0,sizeof(len));
for(int i=1;i<=n;i++)fill(dp[i]+1,dp[i]+n+1,inf);
for(int i=2;i<=n;i++){
int f,t;
scanf("%d%d",&f,&t);
e[f][len[f]++]=t;
}
dfs(1);
int ans=dp[1][p];//1是根节点分离它不需要切
for(int i=2;i<=n;i++)ans=min(ans,dp[i][p]+1);//非根子树都要切
// printdp();
printf("%d\n",ans); return 0;
}

  

POJ 1947 Rebuilding Roads 树形dp 难度:2的更多相关文章

  1. POJ 1947 Rebuilding Roads 树形DP

    Rebuilding Roads   Description The cows have reconstructed Farmer John's farm, with its N barns (1 & ...

  2. DP Intro - poj 1947 Rebuilding Roads(树形DP)

    版权声明:本文为博主原创文章,未经博主允许不得转载. Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissi ...

  3. [poj 1947] Rebuilding Roads 树形DP

    Rebuilding Roads Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 10653 Accepted: 4884 Des ...

  4. POJ 1947 Rebuilding Road(树形DP)

    Description The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, n ...

  5. POJ 1947 Rebuilding Roads (树dp + 背包思想)

    题目链接:http://poj.org/problem?id=1947 一共有n个节点,要求减去最少的边,行号剩下p个节点.问你去掉的最少边数. dp[u][j]表示u为子树根,且得到j个节点最少减去 ...

  6. 树形dp(poj 1947 Rebuilding Roads )

    题意: 有n个点组成一棵树,问至少要删除多少条边才能获得一棵有p个结点的子树? 思路: 设dp[i][k]为以i为根,生成节点数为k的子树,所需剪掉的边数. dp[i][1] = total(i.so ...

  7. POJ 1947 Rebuilding Roads

    树形DP..... Rebuilding Roads Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 8188 Accepted: ...

  8. POJ1947 - Rebuilding Roads(树形DP)

    题目大意 给定一棵n个结点的树,问最少需要删除多少条边使得某棵子树的结点个数为p 题解 很经典的树形DP~~~直接上方程吧 dp[u][j]=min(dp[u][j],dp[u][j-k]+dp[v] ...

  9. POJ 1947 Rebuilding Roads(树形DP)

    题目链接 题意 : 给你一棵树,问你至少断掉几条边能够得到有p个点的子树. 思路 : dp[i][j]代表的是以i为根的子树有j个节点.dp[u][i] = dp[u][j]+dp[son][i-j] ...

随机推荐

  1. bzoj 3600 没有人的算术 - 替罪羊树 - 线段树

    题目都是图片,就不给了,就给链接好了 由于bzoj比较慢,就先给[vjudge传送门] 有兴趣的可以去逛bzoj[bzoj传送门] 题目大意 有n个数a[1],a[2],...,a[n],它们开始都是 ...

  2. python循环和布尔表达式总结

    1.Python的for循环是循环遍历序列的有限循环. 2.Python的while语句是一个不定循环的例子.只要循环条件保持为真,它就继续迭代.使用不定循环时,程序员必须注意,以免不小心写成无限循环 ...

  3. sql:临时表和表变量

    在SQL Server的性能调优中,有一个不可比拟的问题:那就是如何在一段需要长时间的代码或被频繁调用的代码中处理临时数据集,表变量和临时表是两种选择. 临时表: 临时对象都以#或##为前缀,临时表是 ...

  4. BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 思路: 容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k ...

  5. URL重写与URL路由

    要介绍这两个内容,必须要从ASP.NET管线说起. ASP.NET管线 管线(Pipeline)这个词形象地说明了每个Asp.net请求的处理过程: 请求是在一个管道中,要经过一系列的过程点,这些过程 ...

  6. hdu 1005 矩阵快速幂

    #include<iostream> #include<cstdio> #include<cmath> #include<string> #includ ...

  7. tyvj 2075 [NOIP2012T5]借教室 区间更新+二分

    描述 在大学期间,经常需要租借教室.大到院系举办活动,小到学习小组自习讨论,都需要向学校申请借教室.教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样.面对海量租借教室的信息,我们自然希望编 ...

  8. go 并发

    package main import ( "fmt" "time" ) func say(s string) { ; i < ; i++ { time. ...

  9. python 数据交换

    例1 def change(data): data[],data[]=data[],data[] print('函数内交换位置后:') ): print('data[%d]=%3d' %(i,data ...

  10. 【转】C/C++ 函数指针与类函数指针

    转自:http://blog.csdn.net/iamshaofa/article/details/17614615 C函数指针 int numAdd(int a, int b) { return a ...