Executor框架(三)线程池详细介绍与ThreadPoolExecutor
本文将介绍线程池的设计细节,这些细节与 ThreadPoolExecutor类的参数一一对应,所以,将直接通过此类介绍线程池。
ThreadPoolExecutor类 简介
java.uitl.concurrent.ThreadPoolExecutor类是线程池中最核心的一个类,因此如果要透彻地了解Java中的线程池,必须先了解这个类。
ThreadPoolExecutor 的构造方法
public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit, BlockingQueue<Runnable> workQueue);
public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit, BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory);
public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit, BlockingQueue<Runnable> workQueue,RejectedExecutionHandler handler);
public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler);
注意: 几个参数的大小范围,corePoolSize >= 0,maximumPoolSize >= 1 ,keepAliveTime >= 0(keepAliveTime为0时,表示线程永久存活,即使空闲很长时间,也不会撤销)
线程池配置的各种参数以及策略
1. corePoolSize (核心池的大小)与 maximumPoolSize(线程池最大线程数)
- ThreadPoolExecutor 将根据 corePoolSize 和 maximumPoolSize 设置的边界自动调整池大小。
- 池中线程的创建策略。 当新任务在方法 execute(java.lang.Runnable) 中提交时,如果运行的线程少于 corePoolSize,则创建新线程来处理请求,即使其他辅助线程是空闲的。如果运行的线程多于 corePoolSize 而少于 maximumPoolSize,则仅当队列满时才创建新线程。
- 数量固定的线程池。 如果设置的 corePoolSize 和 maximumPoolSize 相同,则创建了固定大小的线程池。
- 线程池数量任意。 如果将 maximumPoolSize 设置为基本的无界值(如 Integer.MAX_VALUE),则允许池适应任意数量的并发任务。
- 动态更改大小。 在大多数情况下,核心和最大池大小仅基于构造来设置,不过也可以使用 setCorePoolSize(int) 和 setMaximumPoolSize(int) 进行动态更改。
2. 线程创建的时机
- 默认情况下,即使核心线程最初只是在新任务到达时才创建和启动的
- 也可以使用方法 prestartCoreThread() 或 prestartAllCoreThreads() 对其进行动态重写。如果构造带有非空队列的池,则可能希望预先启动线程。
3. 线程创建的工厂方法 ThreadFactory
- 使用 ThreadFactory 创建新线程。通过提供不同的 ThreadFactory,可以改变线程的名称、线程组、优先级、守护进程状态,等等。如果从 newThread 返回 null 时 ThreadFactory 未能创建线程,则执行程序将继续运行,但不能执行任何任务。
4. 保持活动时间 keepAliveTime
- 如果池中当前有多于 corePoolSize 的线程,则这些多出的线程在空闲时间超过 keepAliveTime 时将会终止,直到池中的数量减少到核心数。这提供了当池处于非活动状态时减少资源消耗的方法。
- 默认情况下,保持活动策略只在有多于 corePoolSizeThreads 的线程时应用。但是只要 keepAliveTime 值非 0,allowCoreThreadTimeOut(boolean) 方法调用后,也可将此超时策略应用于核心线程。
5. BlockingQueue 任务队列
- 如果运行的线程少于 corePoolSize,则 Executor 始终首选添加新的线程,而不进行排队。
- 如果运行的线程等于或多于 corePoolSize,则 Executor 始终首选将请求加入队列,而不添加新的线程。
- 如果无法将请求加入队列,则创建新的线程,除非创建此线程超出 maximumPoolSize,在这种情况下,任务将被拒绝。
- 任务队列的策略
- 直接提交。工作队列的默认选项是 SynchronousQueue,它将任务直接提交给线程而不保持它们。在此,如果不存在可用于立即运行任务的线程,则试图把任务加入队列将失败,因此会构造一个新的线程。此策略可以避免在处理可能具有内部依赖性的请求集时出现锁。直接提交通常要求无界 maximumPoolSizes 以避免拒绝新提交的任务。当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
- 无界队列。使用无界队列(例如,不具有预定义容量的 LinkedBlockingQueue)将导致在所有 corePoolSize 线程都忙时新任务在队列中等待。这样,创建的线程就不会超过 corePoolSize。(因此,maximumPoolSize 的值也就无效了。)当每个任务完全独立于其他任务,即任务执行互不影响时,适合于使用无界队列;例如,在 Web 页服务器中。这种排队可用于处理瞬态突发请求,当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
- 有界队列。当使用有限的 maximumPoolSizes 时,有界队列(如 ArrayBlockingQueue)有助于防止资源耗尽,但是可能较难调整和控制。队列大小和最大池大小可能需要相互折衷:使用大型队列和小型池可以最大限度地降低 CPU 使用率、操作系统资源和上下文切换开销,但是可能导致人工降低吞吐量。如果任务频繁阻塞(例如,如果它们是 I/O 边界),则系统可能为超过您许可的更多线程安排时间。使用小型队列通常要求较大的池大小,CPU 使用率较高,但是可能遇到不可接受的调度开销,这样也会降低吞吐量。
6. 被拒绝的任务的处理策略
当 Executor 已经关闭,并且 Executor 将有限边界用于最大线程和工作队列容量,且已经饱和时,在方法 execute(java.lang.Runnable) 中提交的新任务将被拒绝。在以上两种情况下,execute 方法都将调用其 RejectedExecutionHandler 的 RejectedExecutionHandler.rejectedExecution(java.lang.Runnable, java.util.concurrent.ThreadPoolExecutor) 方法。下面提供了四种预定义的处理程序策略:
- ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常。
- ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常。
- ThreadPoolExecutor.DiscardOldestPolicy:如果执行程序尚未关闭,丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)
- ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务。即直接在 execute 方法的调用线程中运行被拒绝的任务;
7. 队列维护
- 方法 getQueue() 允许出于监控和调试目的而访问工作队列。强烈反对出于其他任何目的而使用此方法。remove(java.lang.Runnable) 和 purge() 这两种方法可用于在取消大量已排队任务时帮助进行存储回收。
8. 钩子(hook)方法
此类提供 protected 可重写的 beforeExecute(Runnable) 和 afterExecute(Runnable, Throwable) 方法,这两种方法分别在执行每个任务之前和之后调用。它们可用于操纵执行环境;例如,重新初始化 ThreadLocal、搜集统计信息或添加日志条目。此外,还可以重写方法 terminated() 来执行 Executor 完全终止后需要完成的所有特殊处理。
@ Example1 钩子用法示例
此类的大多数扩展可以重写一个或多个受保护的钩子 (hook) 方法。例如,下面是一个添加了简单的暂停/恢复功能的子类:
class PausableThreadPoolExecutor extends ThreadPoolExecutor {
private boolean isPaused;
private ReentrantLock pauseLock = new ReentrantLock();
private Condition unpaused = pauseLock.newCondition();
public PausableThreadPoolExecutor(...) { super(...); }
protected void beforeExecute(Thread t, Runnable r) {
super.beforeExecute(t, r);
pauseLock.lock();
try {
while (isPaused) unpaused.await();
} catch(InterruptedException ie) {
t.interrupt();
} finally {
pauseLock.unlock();
}
}
public void pause() {
pauseLock.lock();
try {
isPaused = true;
} finally {
pauseLock.unlock();
}
}
public void resume() {
pauseLock.lock();
try {
isPaused = false;
unpaused.signalAll();
} finally {
pauseLock.unlock();
}
}
}
@ Example2 任务拒绝策略示例
下面的例子是通过传入各种参数,配置创建了一个ThreadPoolExecutor线程池实例,并向此线程池提交多个任务,而且任务的数量大于线程池的承受数量。
public class Test_29 {
public static void main(String[] args) throws InterruptedException {
SynchronousQueue<Runnable> queue = new SynchronousQueue<>();
MyThreadFactory threadFactory = new MyThreadFactory();
//创建一个线程池
ThreadPoolExecutor poolExecutor = new ThreadPoolExecutor(2, 3, 60,TimeUnit.SECONDS,queue, threadFactory, new ThreadPoolExecutor.CallerRunsPolicy());
//向线程池提交四个任务
for(int i=0;i<4;i++){
MyRunnable myRunnable = new MyRunnable();
poolExecutor.execute(myRunnable);
}
//关闭线程池
poolExecutor.shutdown();
}
}
//自定义的工厂方法
class MyThreadFactory implements ThreadFactory{
static int number=0;
final String BASE_NAME = "poolthread_";
@Override
public Thread newThread(Runnable r) {
number++;
//自定线程池的创建线程的工厂方法,这里指定线程池中的每个线程命名:poolthread_i
Thread thread = new Thread(r,BASE_NAME+number);
System.out.println("线程池创建了一个线程:"+BASE_NAME+number);
return thread;
}
}
class MyRunnable implements Runnable{
@Override
public void run() {
try {
//休眠一秒,模拟线程的执行过程
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
//输出当前执行任务的线程的名称
System.out.println("任务完成,执行任务的线程是:"+Thread.currentThread().getName());
}
}
运行结果:
线程池创建了一个线程:poolthread_1
线程池创建了一个线程:poolthread_2
线程池创建了一个线程:poolthread_3
任务完成,执行任务的线程是:main
任务完成,执行任务的线程是:poolthread_2
任务完成,执行任务的线程是:poolthread_3
任务完成,执行任务的线程是:poolthread_1
注意此线程池的配置,队列用的是 SynchronousQueue ,即不会存储任务,都是要立即执行任务,所以此线程池的同一时间内只能最多接受3个任务。而例子一共提交了4个任务,由于拒绝任务的策略是ThreadPoolExecutor.CallerRunsPolicy,所以被线程池拒绝执行的任务,就由main线程执行了。
拒绝任务的策略,除了JDK已经提供的四种外,还可以自定义策略,方法就是实现 RejectedExecutionHandler 接口
Executors 中提供了三种常用的ThreadPoolExecutor的创建:
1. FixedThreadPool 固定线程池
固定线程池 的线程数量是固定的,由传入的参数决定。线程 keepAliveTime 为0,即不会因为空闲超时而关闭线程,同时队列是无边界的队列,不会发生任务丢弃。
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
2. SingleThreadPoolExcutor 单线程池
单线程池中线程数量固定为1.
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}
3. CachedThreadPool 缓存线程池
缓存线程池的核心线程corePoolSize 数量为0,但是池中的最大线程数是 无边界。空闲超时为60s,队列用了SynchronousQueue,即任务是立即交付运行的。
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
Executor框架(三)线程池详细介绍与ThreadPoolExecutor的更多相关文章
- Java 并发编程——Executor框架和线程池原理
Eexecutor作为灵活且强大的异步执行框架,其支持多种不同类型的任务执行策略,提供了一种标准的方法将任务的提交过程和执行过程解耦开发,基于生产者-消费者模式,其提交任务的线程相当于生产者,执行任务 ...
- Java 并发编程——Executor框架和线程池原理
Java 并发编程系列文章 Java 并发基础——线程安全性 Java 并发编程——Callable+Future+FutureTask java 并发编程——Thread 源码重新学习 java并发 ...
- 并发新特性—Executor 框架与线程池
兰亭风雨 · 更新于 2018-11-14 09:00:31 并发新特性-Executor 框架与线程池 Executor 框架简介 在 Java 5 之后,并发编程引入了一堆新的启动.调度和管理线程 ...
- java并发编程(十七)Executor框架和线程池
转载请注明出处:http://blog.csdn.net/ns_code/article/details/17465497 Executor框架简介 在Java 5之后,并发编程引入了一堆新的启动 ...
- 转:【Java并发编程】之十九:并发新特性—Executor框架与线程池(含代码)
Executor框架简介 在Java5之后,并发编程引入了一堆新的启动.调度和管理线程的API.Executor框架便是Java 5中引入的,其内部使用了线程池机制,它在java.util.coc ...
- 【Java并发编程】:并发新特性—Executor框架与线程池
Executor框架简介 在Java5之后,并发编程引入了一堆新的启动.调度和管理线程的API.Executor框架便是Java 5中引入的,其内部使用了线程池机制,它在java.util.cocur ...
- Java的Executor框架和线程池实现原理
Java的Executor框架 1,Executor接口 public interface Executor { void execute(Runnable command); } Executor接 ...
- Java 并发编程中的 Executor 框架与线程池
Java 5 开始引入 Conccurent 软件包,提供完备的并发能力,对线程池有了更好的支持.其中,Executor 框架是最值得称道的. Executor框架是指java 5中引入的一系列并发库 ...
- 并发新特性—Executor框架与线程池
http://blog.csdn.net/ns_code/article/details/17465497 Executor框架简介 在Java5之后,并发编程引入了一堆新的启动.调度和管理线程的AP ...
随机推荐
- TJU Problem 1100 Pi
注: 1. 对于double计算,一定要小心,必要时把与double计算相关的所有都变成double型. 2. for (int i = 0; i < N; i++) //N 不 ...
- CTF-练习平台-WEB之 签到题
一.签到题 根据提示直接加群在群公告里就能找到~
- java8 array、list操作 汇【3】)(-Java8新特性之Collectors 详解
//编写一个定制的收集器 public static class MultisetCollector<T> implements Collector<T, Multiset<T ...
- jsp页面编写锚点,和html页面编写锚点
html锚点的编写方式,在jsp中不兼容.因此在写动态网页时,需要注意 一:html页面中的锚点编写方式 HTML锚点 <a href="#abc">goto1< ...
- oracle 与sql serve 获取随机行数的数据
Oracle 随机获取N条数据 当我们获取数据时,可能会有这样的需求,即每次从表中获取数据时,是随机获取一定的记录,而不是每次都获取一样的数据,这时我们可以采取Oracle内部一些函数,来达到这 ...
- Cocos2d-x 2.2.3 使用NDK配置编译环境
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/wwj_748/article/details/30072379 Cocos2d-x 2.2.3 使用 ...
- MySQL Group Replication
group replication是一种全新的高可用,高扩张的MySQL集群服务.高一致性,基于原生复制及paxos协议的组复制技术,以插件方式提供一致数据安全保证:高容错性,大多数服务正常就可继续工 ...
- 环境搭建之JAVA项目部署步骤
一.配置java环境 1.linux下安装jdk,在此处安装1.7_x64的jdk,解压缩 tar -zxvf xxxxxxx 2.将jdk移动到/usr下 mv java /user/ 3.配置环 ...
- 海思3518EV200 SDK中获取和保存H.264码流详解
/****************************************** step 2: Start to get streams of each channel. ********** ...
- EditorConfig知识点
.editorconfig 该文件定义项目的编码规范,编辑器的行为会与.editorconfig 文件中定义的一致,并且其优先级比编辑器自身的设置要高,这在多人合作开发项目时十分有用而且必要. 在哪里 ...