cogs 1962. [HAOI2015]树上染色
★★☆ 输入文件:haoi2015_t1.in
输出文件:haoi2015_t1.out
简单对比
时间限制:1 s 内存限制:256 MB
【题目描述】
有一棵点数为N的树,树边有边权。给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白色。将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的和的收益。问收益最大值是多少。
【输入格式】
第一行两个整数N,K。
接下来N-1行每行三个正整数fr,to,dis,表示该树中存在一条长度为dis的边(fr,to)。输入保证所有点之间是联通的。
【输出格式】
输出一个正整数,表示收益的最大值。
【输入样例1】
3 1
1 2 1
1 3 2
【输出样例1】
3
【输入样例2】
5 2
1 2 3
1 5 1
2 3 1
2 4 2
【输出样例2】
17
【样例解释】
在第二个样例中,将点1,2染黑就能获得最大收益。
【数据范围】
对于30%的数据,N<=20
对于50%的数据,N<=100
对于100%的数据,N<=2000,0<=K<=N
题解:
这是一道树形DP,考虑对于每一条边,它对答案的贡献值=两端的黑点个数乘积*边权+两端白点个数乘积*边权。
令f[i][j]表示以i为根的子树中,有j个黑点的最大收益。对于某一个节点x及其某一儿子y,考虑x与y的连边对答案的贡献,我们可以先枚举x中的黑点个数,再枚举y的黑点个数,用类似01背包来转移。
/**************************************************************
Problem: 4033
User: __abcdef__
Language: C++
Result: Accepted
Time:6824 ms
Memory:32932 kb
****************************************************************/ #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;
typedef long long LL;
const LL inf=1e15,maxn=;
LL N,K;
vector<LL> to[maxn],cost[maxn];
LL fa[maxn],f[maxn][maxn],siz[maxn];
inline void dfs(LL x,LL fath){
fa[x]=fath; siz[x]=;
for(int i=;i<to[x].size();i++){
LL y=to[x][i];
if(y!=fath){
dfs(y,x);
siz[x]+=siz[y];
}
}
} inline void calc(LL x){//计算以x为根的情况
f[x][]=; f[x][]=;
if(siz[x]==) return ;//叶子节点
for(int i=;i<to[x].size();i++){//枚举子树
LL y=to[x][i],val=cost[x][i];
if(y!=fa[x]){
calc(y);
for(int tot=min(K,siz[x]);tot>=;tot--){//枚举以x为根的子树中有几个黑点
for(int j=;j<=min(siz[y],K)&&j<=tot;j++){//这个子树中有多少黑点
LL ans1=(LL)j*(K-(LL)j)*val;
LL ans2=(siz[y]-(LL)j)*(N-K-(siz[y]-(LL)j))*val;
LL tmp=f[y][j]+ans1+ans2;
f[x][tot]=max(f[x][tot],f[x][tot-j]+tmp);
}
}
}
}
} int main(){
scanf("%lld%lld",&N,&K);
for(int i=;i<=N-;i++){
LL u,v,c;
scanf("%lld%lld%lld",&u,&v,&c);
to[u].push_back(v); cost[u].push_back(c);
to[v].push_back(u); cost[v].push_back(c);
}
for(int i=;i<=N;i++){
for(int j=;j<=N;j++){
f[i][j]=-inf;
}
}
dfs(,-);
calc();
printf("%lld\n",f[][K]);
return ;
}
cogs 1962. [HAOI2015]树上染色的更多相关文章
- bzoj 4033: [HAOI2015]树上染色 [树形DP]
4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...
- BZOJ4033: [HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3461 Solved: 1473[Submit][Stat ...
- BZOJ4033 HAOI2015 树上染色 【树上背包】
BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...
- [BZOJ4033][HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2437 Solved: 1034[Submit][Stat ...
- 【BZOJ4033】[HAOI2015]树上染色 树形DP
[BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...
- BZOJ_4033_[HAOI2015]树上染色_树形DP
BZOJ_4033_[HAOI2015]树上染色_树形DP Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的 ...
- BZOJ 4033[HAOI2015] 树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3188 Solved: 1366[Submit][Stat ...
- [HAOI2015]树上染色(树形dp)
[HAOI2015]树上染色 题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所 ...
- [HAOI2015]树上染色(树上dp)
[HAOI2015]树上染色 这种要算点对之间路径的长度和的题,难以统计每个点的贡献.这个时候一般考虑算每一条边贡献了哪些点对. 知道这个套路以后,那么这题就很好做了. 状态:设\(dp[u][i]\ ...
随机推荐
- upower xdisplay--nvidia -vga---cpu info
grep 'physical id' /proc/cpuinfo | sort -u | wc -l grep 'core id' /proc/cpuinfo | sort -u | wc -l gr ...
- 【Pyton】【小甲鱼】文件
1.打开文件的集中模式: 2.文件对象方法: 对于文件对象方法的练习代码: 读取F:\\script\\script.txt位置文件中内容 >>> f=open('F:\\scrip ...
- sql优化 表连接join方式
sql优化核心 是数据库中 解析器+优化器的工作,我觉得主要有以下几个大方面:1>扫表的方法(索引非索引.主键非主键.书签查.索引下推)2>关联表的方法(三种),关键是内存如何利用 ...
- read 命令
read 用来接收标准输入 #!/bin/bash read -t -p "Please input a number:" number echo $number //把键盘输入的 ...
- 一行代码彻底禁用WordPress缩略图自动裁剪功能
记得在博客分享七牛缩略图教程的时候,提到过 WordPress 默认会将上传的图片裁剪成多个,不但占用磁盘空间,也会拖慢网站性能,相当闹心! 当时也提到了解决办法: ①.关闭主题自带缩略图裁剪功能(若 ...
- Linux环境下解压rar文件
可以用unrar命令解压rar后缀的文件 unrar e test.rar 解压文件到当前目录 unrar x test.rar /path/to/extract unrar l test.rar 查 ...
- gcc升级
升级到4.8[这个应该是目前最新的啦,不过网上查的话已经到5.2啦,感觉落后一点比较稳,当然还有就是这个版本是新的里面使用最多的]wget http://people.centos.org/tru/d ...
- C/S模型之TCP协议
服务端: // WSASever.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <WinSock2.h> # ...
- source的简单操作
source五部曲 git工作流:建立新功能 更改文件后,提交 点击git工作流完成新功能 点击推送 点击拉取
- 【kafka学习之四】kafka集群性能测试
kafka集群的性能受限于JVM参数.服务器的硬件配置以及kafka的配置,因此需要对所要部署kafka的机器进行性能测试,根据测试结果,找出符合业务需求的最佳配置. 1.kafka broker j ...